3-3 START UP

1. Use your calculator to evaluate the limits below:
(a) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$ assuming x is in radians

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

(b) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$ assuming x is in degrees

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=0.01745
$$

(c) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}$ assuming x is in radians $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$
2. You are going to establish the derivative of $f(x)=\sin x$.
(a) Start by applying the definition of the derivative to $f(x)=\sin x$. (The definition with the limit and the little h.)

$$
\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}
$$

(b) There is a trig identity: $\sin (a+b)=\sin a \cos b+\sin b \cos a$. Use this identity to rewrite the term $\sin (x+h)$.

$$
\lim _{h \rightarrow 0} \frac{\sin x \cosh +\sinh \cos x-\sin x}{h}
$$

(c) Collect the terms with $\sin x$ together and any terms with $\cos x$. Once you have done this, see if you can use the limits from part 1 to evaluate the limit and find the derivative of $\sin x$.

$$
\begin{aligned}
& \lim _{h \rightarrow 0}\left[\sin x\left(\frac{\cos h-1}{h}\right)+\left(\frac{\sin h}{h}\right) \cos x\right] \\
& =(\sin x)\left[\lim _{h \rightarrow 0} \frac{\cos h-1}{h}\right]+(\cos x)\left[\lim _{h \rightarrow 0} \frac{\sin h}{h}\right] \\
& =(\sin x)(0)+(\cos x) \cdot(1)=\cos x
\end{aligned}
$$

3. Does it matter whether you use degrees or radians to find the derivative of $f(x)=\sin x$?
apparently. See yellow arrow
The 1 would be $0.01745 \ldots$
4. For $f(x)=\sin x$, sketch $f(x)$ and $f^{\prime}(x)$ on the same axes and check the "reasonableness" of your answer.

Where $y=\sin x$ has a horizontal tangent, $y=\cos x$ is zero.
5. Use the fact that you know the derivative of $y=\sin x$ to find the derivative of $y=\csc x$.

$$
y=\csc x=\frac{1}{\sin x}
$$

Apply Quotient Rule:

$$
\begin{aligned}
y^{\prime}=\frac{(\sin x) \cdot 0-1 \cdot \cos x}{\sin ^{2} x}=\frac{-\cos x}{\sin ^{2} x} & =-\frac{\cos x}{\sin x} \cdot \frac{1}{\sin x} \\
& =-\cot x \csc x
\end{aligned}
$$

