3-4 DAY 2

1. A rocket is launching, and its height h in meters is a function of t in seconds (so we are considering the function $h(t)$). Explain what $h^{\prime}(10)=1035$ means in language your mom could understand. You answer must include units.
2. Find the derivative of the function.
(a) $f(x)=x e^{1 / x}$
(b) $g(x)=\frac{\tan (2 x)}{1+x}$
(c) $y=\left(1+x^{2}\right) e^{x} \sec x$
(d) $h(x)=\sin \left(5 x-e^{-5 x}\right)$
(e) $f(x)=\sqrt{1+x e^{-2 x}}$
3. Find the equation of the line tangent to the graph of $f(x)=\sqrt{1+x^{3}}$ when $x=2$.
4. Find $y^{\prime \prime}$ for $y=\frac{1}{(1+\tan x)^{2}}$.
5. If the equation of motion of a particle is given by

$$
s=A \cos (\omega t+\delta)
$$

a particle is said to undergo simple harmonic motion. Find the velocity of the particle at time t and determine when the velocity is zero.
6. The brightness of a star is give by

$$
B(t)=4.0+0.35 \sin \left(\frac{2 \pi t}{5.4}\right)
$$

where t is measured in days. Find the rate of change of brightness after one day and interpret your answer.

