$$
3-6 \quad \text { algebra } \frac{1}{\sqrt{1-\frac{x^{2}}{144}}} \cdot \frac{12}{12}=\frac{12}{\sqrt{144-x^{2}}}
$$

1. (Warm-up)A 12 -foot ladder is leaning against a wall. Let x denote the distance of the base of the ladder from the wall, and let θ be the angle between the ladder and the wall.
(a) How fast does the angle θ change with respect to x ?

$$
\sin \theta=\frac{x}{12}
$$

We want $\frac{d \theta}{d t}$.

$$
\left[\begin{array}{l}
\theta=\arcsin \left(\frac{x}{12}\right) \\
\frac{d \theta}{d t}=\frac{1}{\sqrt{1-\left(\frac{x}{12}\right)^{2}}} \cdot \frac{1}{12}=\frac{1}{\sqrt{144-x^{2}}} \mathrm{rad} / \mathrm{min} \\
\text { make } \\
\text { sen } x
\end{array}\right.
$$

Solve for θ.
(b) I compute that $d \theta / d x \approx 0.1$ when $x=7$. What does this mean in language your parents can understand? Feel free to express your answer in terms of degrees instead of radians.
$0.1 \mathrm{rad} \left\lvert\, \frac{180^{\circ}}{\pi \mathrm{rad}}=\frac{18^{\circ}}{\pi} \approx \frac{18^{\circ}}{3}=6^{\circ}\right.$. So, parents, when the base of wall and being pushed away from ladder is 7 all, the fang le with the wall is increasing at a rate of about 6° per foot.
2. Vera says she is not a huge fan of logarithms so rewrites the function $y=\ln x$ as $x=e^{y}$. Is this ok?

Yes. This is a demonstration of the definition of $\ln x$ as inverse of e^{x}. Lie: How do you find the inverse of $y=f(x)$? Switch $x \not d y$ and Solve for y.)
3. Find $\frac{d y}{d x}$ implicitly for $x=e^{y}$ and write your answer in terms of x.

$$
1=e^{y} \cdot \frac{d y}{d x} . \text { So } \frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{e^{\ln x}}=\frac{1}{x}
$$

4. Find $\frac{d y}{d x}$ implicitly for $x=a^{y}$ and write your answer in terms of x.

Congratulations, you just derived the formulas for the derivatives of logarithms.

Using the formulas you just derived (and possibly the chain rule and/or the quotient rule and/or the product rule...) find the derivatives of each of the following:
5. $f(x)=(\ln x)^{7 / 2}$
6. $f(x)=\ln (\sqrt{x})=\ln \left(x^{\frac{1}{2}}\right)=\frac{1}{2} \ln x$; So $f^{\prime}(x)=\frac{1}{2} \cdot \frac{1}{x}=\frac{1}{2 x}$ about logs.
7. $f(x)=\ln (3 x+1) \quad$ (Chain rub)

$$
f^{\prime}(x)=\frac{1}{3 x+1} \cdot 3=\frac{3}{3 x+1}
$$

$\left.\therefore \cos \left[\frac{x_{2}}{2 x}\right)^{2}\right]$
(a) Without actually taking the derivative, list the rules you would need to do so.

- Chain rule
- quotient rater
(b) Use rules of logarithms, expand the right-hand side and then take the derivative.

$$
\begin{aligned}
& y=\ln \left(\left(\frac{x^{2}-2}{3-x}\right)^{3}\right)=3 \ln \left(\frac{x^{(b)}-2}{3-x}\right)^{\text {U }}=3\left[\ln \left(x^{2}-2\right)-\ln (3-x)\right] \\
& \frac{d y}{d x}=3\left[\frac{2 x}{x^{2}-2}-\frac{-1}{3-x}\right]=\frac{6 x}{x^{2}-2}+\frac{3}{3-x}
\end{aligned}
$$

\#8 can be exploited:
$y=(\cos x)^{x}$ why doit any previous rules work?

New problem

$$
\begin{aligned}
& \ln y=\ln \left[\left(\cos x x^{x}\right]\right. \\
& \ln y=x \ln (\cos x)
\end{aligned}
$$

(take derivative implicitly

$$
\begin{aligned}
\frac{1}{y} \cdot y^{\prime} & =1 \cdot \ln (\cos x)+x \cdot \frac{1}{\cos x} \cdot-\sin x \\
\frac{d y}{d x} & =y[\ln (\cos x)-x \tan x] \\
& =(\cos x)^{x}[\ln (\cos x)-x \tan x]
\end{aligned}
$$

Sketch $y=\ln |x|$.
Can you give a formula for just the LHS?

$$
\begin{aligned}
& f(x)=\ln (-x) \\
& f^{\prime}(x)=\frac{1}{-x} \cdot-1=\frac{1}{x}
\end{aligned}
$$

