3-6

1. (Warm-up)A 12 -foot ladder is leaning against a wall. Let x denote the distance of the base of the ladder from the wall, and let θ be the angle between the ladder and the wall.
(a) How fast does the angle θ change with respect to x ?
(b) I compute that $d \theta / d x \approx 0.1$ when $x=7$. What does this mean in language your parents can understand? Feel free to express your answer in terms of degrees instead of radians.
2. Vera says she is not a huge fan of logarithms so rewrites the function $y=\ln x$ as $x=e^{y}$. Is this ok? Is it really the same function?
3. Find $\frac{d y}{d x}$ implicitly for $x=e^{y}$ and write your answer in terms of x. (You will want to use \# 2 above).
4. Find $\frac{d y}{d x}$ implicitly for $x=a^{y}$ and write your answer in terms of x. (You will want to use \# 2 above)

Congratulations, you just derived the formulas for the derivatives of logarithms.

Using the formulas you just derived (and possibly the chain rule and/or the quotient rule and/or the product rule...) find the derivatives of each of the following:
5. $f(x)=(\ln x)^{7 / 2}$
6. $f(x)=\ln (\sqrt{x})$
7. $f(x)=\ln (3 x+1)$
8. Consider $y=\ln \left(\frac{x^{2}-2}{3-x}\right)^{3}$
(a) Without actually taking the derivative, list the rules you would need to do so.
(b) Use rules of logarithms, expand the right-hand side and then take the derivative.

