1. (Warm-up)

$$
\begin{aligned}
& y=\left(x^{2}+1\right)^{\sin x} \\
& \ln y=(\sin x) \ln \left(x^{2}+1\right) \\
& \frac{1}{y} \cdot y^{\prime}=(\sin x)\left(\frac{2 x}{x^{2}+1}\right)+(\cos x) \cdot \ln \left(x^{2}+1\right) \quad y^{\prime}=\left(x^{2}+1\right)^{\sin x}\left[\frac{2 x \sin x}{x^{2}+1}+\cos x \ln \left(x^{2}+1\right)\right]
\end{aligned}
$$

(b) Find the derivative of $f(x)=\cos \left(100 a \frac{3-x}{\sqrt{2}}\right)$ in the most efficient manner.

$$
f^{\prime}(x)=-\sin \left(\frac{100 a}{\sqrt{2}}(3-x)\right) \cdot \frac{-100 a}{\sqrt{2}}=\frac{100 a}{\sqrt{2}} \sin \left(\frac{100 a}{\sqrt{2}}(3-x)\right)
$$

2. Let $n=f(t)$ model the number of voles in my garden starting in year 2000 where n counts the number of voles and t is measured in years. Assume that in 2000, 5 voles lived in the garden and that I estimate that the number of voles doubles every three years.
(a) Find $f(0), f(3), f(6)$, and $f(9)$ using the assumptions above. (include units)
$f(0)=5$ voles \quad pattern recognition
$f(3)=10$ voles
$f(6)=20$ voles
$f(9)=40$ voles

t	0	3.1	$3 \cdot 2$	3.3
n	5	$5 \cdot 2^{1}$	$5 \cdot 2^{2}$	$5 \cdot 2^{3}$

(b) Find an expression for $n=f(t)$ in general.

$$
n=f(t)=5 \cdot 2^{t / 3}
$$

(c) Find and interpret $f^{\prime}(10)$.

$$
\begin{aligned}
f^{\prime}(10) & =\frac{5}{3}(\ln 2) 2^{10 / 3} \\
& \approx 11.64
\end{aligned}
$$

$\ln 2010$, the vole population of the garden is increasing at a rate of 11.6 voles per year.
3. The position of a particle moving along a straight line is given by: $s(t)=3 \sin (\pi t / 2)$ for $t \geq 0$ where t is measured in seconds and s is measured in feet.
(a) Find the position at which the particle starts.

Find s when $t=0$.

$$
S(0)=3 \sin (0)=0
$$

(b) Where is the particle 3 seconds after starting?

Find s when $t=3$.

$$
S(3)=3 \sin \left(\frac{3 \pi}{2}\right)=-3
$$

(c) When is the particle in position 0 ?

Find t when $S=0$
$0=\sin \left(\frac{\pi t}{2}\right)$
So $t=2 k, k$ integer

$$
0=3 \sin \left(\frac{\pi t}{2}\right) \quad \text { So } \pi \cdot k=\frac{\pi t}{2}
$$

$$
\begin{aligned}
& \text { (d) Find the velocity and the acceleration of the particle. } \\
& s=3 \sin \left(\frac{\pi t}{2}\right) \\
& s^{\prime}=v=3 \cdot \cos \left(\frac{\pi t}{2}\right) \cdot \frac{\pi}{2} \int=\frac{\pi t}{2} \cos \left(\frac{\pi t}{2}\right) ; s^{\prime \prime}=a=a=\frac{3 \pi}{2} \cdot\left[-\cos \left(\frac{\pi t}{2}\right)\right] \cdot \frac{\pi}{2} \\
& \text { (e) When is the particle at rest? }
\end{aligned}
$$

Find t when $v=0$.
$0=\frac{3 \pi}{2} \cos \left(\frac{\pi t}{2}\right)$. $\begin{aligned} & \text { So } 0=\cos \left(\frac{\pi}{2} t\right) \text {. } \\ & \frac{2 k+1) \pi}{2}=\frac{\pi}{2} t \text {; }\end{aligned}$
(f) When is the particle moving in the positive direction?

(g) Find the total distance the particle travels in the first 4 seconds.
$S(0)=0 \quad$ particle travels 3 feet in first second.
$S(1)=3$ So (by symmetry) it travels 12 feet (4.3) in the first 4 seconds.
(h) Sketch a diagram of the motion of the particle.

4. Let $n=f(t)$ model the number of voles in my garden starting in year 2000 where n counts the number of voles and t is measured in years. Assume that in 2000, three voles lived in the garden and that I estimate that the number of voles doubles every three years.
(a) Find $f(0), f(3), f(6)$, and $f(9)$ using the assumptions above/(include units)
(b) Find an expression for $n=f(t)$ in general.

5. The volume of a growing spherical cell is modeled by $V=\frac{4}{3} \pi r^{3}$ where r is the radius of the cell measured in micrometers $\left(1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}\right.$.)
(a) Find and interpret V (4). (include units)

$$
v(4)=\frac{4}{3} \pi 4^{3}=\frac{256}{3} \pi \approx 268 \mu^{3}
$$

The cell has volume $268 \mu^{3}$ when the radius is $4 \mu \mathrm{~m}$.

(b) Find the average rate of change of the volume of the cell when its radius increases from 4 to $4.1 \mu \mathrm{~m}$.

$$
\frac{v(4.1)-v(4)}{0.1}=206.13 \mathrm{\mu m}^{3} / \mathrm{\mu m}
$$

(c) Find the instantaneous rate of change of the volume with respect to radius when $r=4 \mu \mathrm{~m}$ and interpret your answer.

Surface
area of $=4 \pi r^{2}$.
splete

