83.9 Start up

- implicit differentiation snap shot
assume y an
implicit imp oft

$$
(\cos y) \cdot \frac{d y}{d x}
$$

- What if we have multiple variables (things) changing overtime?
- Example

- lis getting longer at a rate of $3 \mathrm{in} /$ min
- w is getting sharer at arch of $2 \mathrm{in} / \mathrm{min}$
How is area changing when $l=4$ and $w=7$?

$$
\begin{aligned}
& A=l \cdot \omega \\
& \frac{d A}{d t}=l \cdot \frac{d \omega}{d t}+\omega \cdot \frac{d l}{d t}
\end{aligned}
$$

when thinstant, $\frac{d A}{d t}=4 \cdot(-2)+7 \cdot 3=-8+21=13 \mathrm{in}^{2} / \mathrm{min}$

1. A pebble dropped into a calm pond, causing ripples in the form of circles. The radius r of the outer ripple is increasing at a constant rate of 1 foot per second. When the radius is 4 feet, at what rate is the area A of the water disturbed changing?
We want $\frac{d A}{d t}$ when $r=4$. We know $\frac{d r}{d t}=1$. ft /s.

$$
\begin{aligned}
& A=\pi r^{2} \\
& \frac{d A}{d t}=2 \pi r \frac{d r}{d t}
\end{aligned}
$$

$$
\text { when } r=4 \text {, }
$$

$$
\frac{d A}{d t}=2 \pi \cdot 4 \cdot 1=8 \pi \mathrm{ft}^{2} / \mathrm{s}
$$

The area is increasing at a rate of $8 \pi \approx 25 \mathrm{ft}^{2} / \mathrm{s}$ when the radius is 4 ft .
2. Water runs into a conical tank at the rate of $9 \mathrm{ft}^{3} / \mathrm{min}$. The tank stands point down and has a height of 10 ft and a base radius of 5 ft . How fast is the water level rising when the water is 6 ft deep?

$$
\frac{d V}{d t}=9 \mathrm{ft}^{3} / \mathrm{min}
$$

We want $\frac{d h}{d t}$ when $h=6 \mathrm{ft}$.
We need an equation relating h and V for a cone.
We know $V=\frac{1}{3} \pi r^{2} h$.
Can we eliminate r? Using similar triangle: $\frac{r}{h}=\frac{5}{10}$ or $r=\frac{1}{2} h$.
Substitute: $V=\frac{1}{3} \pi\left(\frac{1}{2} h\right)^{2} h=\frac{\pi}{12} h^{3} \cdot$ So $\frac{d V}{d h}=\frac{\pi}{4} h^{2} \cdot \frac{d h}{d t}$
At $h=6,9=\frac{\pi}{4} \cdot 6^{2} \cdot \frac{d h}{d t}$. Or $\frac{d h}{d t}=\frac{1}{\pi} \approx 0.318 \mathrm{ft} / \mathrm{min}$.
When the height of water is le ft, the height is increasing at a rat
3. A police cruiser, approaching a right-angled intersection from the north, is chasing a speeding car that has turned the corner and is now moving straight east. When the cruiser is 0.6 mi north of the intersection and the car is 0.8 mi to the east, the police determine that the distance between them and the car they are chasing is increasing at a rate of 20 mph . If the cruiser is moving at 60 mph at the instant of measurement, what is the speed of the car?

$$
a^{2}+b^{2}=c^{2}
$$

$$
\text { When } a=0.6 \mathrm{mi}, b=0.8 \mathrm{mi} \text {, and } \frac{d c}{d t}=20 \mathrm{mph}
$$

$$
\text { and } \frac{d a}{d t}=-60 \mathrm{mph}
$$

we want $\frac{d b}{d t}$.
$2 a \frac{d a}{d t}+2 b \frac{d b}{d t}=2 c \frac{d c}{d t}$. So $\frac{d b}{d t}=\left[c \frac{d c}{d t}-a \frac{d a}{d t}\right] / b$. $\begin{gathered}\left(\text { We need } c: c^{2}=(.8)^{2}+(.6)^{2}\right. \\ \text { So } c=1)\end{gathered}$
So $\frac{d b}{d t}=[1 \cdot 20-(0.6)(-60)] / 0.8=70 \mathrm{mph}$. At the moment in this send
the car is traveling at 70 mph a way from the intersection.
4. A hot air balloon rising straight up from a level field is tracked by a range finder 500 feet from the lift-off point. At the moment the range finder's elevation angle is $\pi / 4$, the angle is increasing at the rate of 0.14 radians/min. How fast is the balloon rising at that moment?

range
finder
range
finder
we want $\frac{d h}{d t}$ when $\theta=\frac{\pi}{4}$ and $\frac{d \theta}{d t}=0.14$

$$
\text { So } \tan \theta=\frac{h}{500} \text { or } h=500 \tan \theta
$$

So $\frac{d h}{d t}=500 \sec ^{2} \theta \cdot \frac{d \theta}{d t}$. When $\theta=\frac{\pi}{4}$ and $\frac{d \theta}{d t}=0.14$,

$$
\frac{d h}{d t}=500 \cdot \sec ^{2}\left(\frac{\pi}{4}\right) \cdot(0.14)=500 \cdot 2 \cdot 0.14=140 \mathrm{ft} / \mathrm{min}
$$

So at the moment the rangefinder is at

$$
\begin{aligned}
& \sec \frac{\pi}{4}=\frac{2}{\sqrt{2}}=\sqrt{2} \\
& \sec ^{2} \pi / 4=2
\end{aligned}
$$

