Lecture Notes: 4-1 Maximum and Minimum Values

MOTIVATING EXAMPLES

A

B

DEFINITIONS: Let $f(x)$ be a function with domain D and let c be an x-value in D. Then the y-value $f(c)$ is:

1. an absolute maximum if
2. an absolute minimum if
3. a local maximum if
4. a local minimum if

ARE WE ALL ON THE SAME PAGE?

1. What sort of category is a maximum (or minimum)? (Animal, vegetable, number, point, x-value, y-value, mineral...?)
2. Can function have more than ONE maximum (or minimum)?
3. Can a function have neither a maximum nor a minimum?
4. Looking at our earlier pictures, at what sort of places do maximums and minimums appear?
5. What happens if the graph is not continuous? Draw some pictures.

Definition: A critical number of a function $f(x)$ is an \qquad -value c \qquad such that either
(a)
or (b)

Without using your calculator, for each function below:
a) Sketch the graph.
b) Find any critical points or explain why none exist.
c) Identify any absolute and local maximum and maximum values of f and state where they occur. If none exist, state this explicitly.

1. $f(x)=5+54 x-2 x^{3}$
2. $g(x)=1+5 \cos x$
3. $h(x)=\ln x$ on $(0,5]$
4. $f(x)=(x-1)^{2 / 3}$ (This one you may graph on a calculator after you have tried the technique called "thinking about it first.")
