4-2 The Mean Value Theorem
MOtIVATING EXAMPLES: Draw several examples of graphs of functions such that (i) the domain is $\{a, b]$ and (ii) $f(a)=f(b)$. Note you are not required to make sketches that are continuous or differentable, though you may choose to do so.




Draw some conclusions:
If $f(x)$ is continuous + differentiable, then there is some place where the tangent is horizontal
(1) $f(x)$ is continuous on $[a, b]$ and (2) $f^{\prime}(x)$ exists on $(a, b)$ and

ROLLE'S THEOREM: If
(3) $f(a)=f(b)$
then there is a number $c$ in the interval $(a, b)$ such that $f^{\prime}(c)=0$.
PRoof: What can happen as you trace the graph from $x=a$ to $x=b$ ?

- It stays flat. So every $c$ in $(a, b)$ has $f^{\prime}(c)=0$.
- It starts to increase. So $f$ has a max. I So at the $x$-values
- It starts to decrease. So has a min. $($ say $x=c)$ where these occur,

$$
f^{\prime}(c)=0 .
$$

Practice Problems:

1. Consider $f(x)=x^{4}-\frac{8}{3} x^{3}+1$ on the interval $[0,8 / 3]$.
(a) Verify that the function $f(x)$ satisfies the hypothesis of Rolle's Theorem on the given interval.
(3)

$$
f(0)=1
$$

$$
f(8 / 3)=1
$$

(1)amd(2) : $f$ is a polynomial so it is continuous and differentiable every where.
(b) Find all numbers $c$ that satisfy the conclusion of Rolle's Theorem.

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-8 x^{2}=4 x^{2}(x-2) \quad \text { Answer: } c=2 \\
& f^{\prime}(x)=0 \text { when } \frac{x}{x}=0 \text { or } x=2 \\
& \begin{array}{l}
\text { not in } \\
\text { interval }(0,8 / 3
\end{array}
\end{aligned} \quad \text { }
$$

(c) Sketch the graph on your calculator to show that your answer above are correct.


$$
\begin{aligned}
& 3.5 \pi \\
= & 2 \pi+1.5 \pi
\end{aligned}
$$

2. Use Rolle's Theorem to show that the equation $x^{3}-15 x+d=0$ can have at most one solution in the interval $[-2,2]$.
HINT: Show that there is no way there could be two solutions!
OK. I'll follow the hint . What if $f(x)=x^{3}-15 x+d$ has two Solutions in $[-2,2]$ ? Then $f(x)$ would have two $x$-values (say $x=a+x=b$ ) where $f(a)=0=f(b)$. [Polis Thu uses $f$ so $I^{\prime}$ 'll find that.]
 Now $f^{\prime}(x)=3 x^{2}+15=0$ if $x= \pm \sqrt{5}$. But neither $\sqrt{5}$ or $-\sqrt{5}$ are in $[-2,2]$. So $f(x)$ has no turn around points. So it cant have two solutions.

Motivating Examples: Draw several examples of graphs of functions such that (i) the domain is [abb], (ii) $f(x)$ is continuous on $[a, b]$, and (iii) $f(x)$ is differentiable on $[a, b]$. We are not assuming that $f(a)=f(b)$.




QUESTION: In each picture above, draw (or in some other way identify) the quantity:

$$
\begin{aligned}
& \frac{f(b)-f(a)}{b-a} \text { It's the } \\
& \text { em applied? } \\
& \text { slope of the } \\
& \text { lines. }
\end{aligned}
$$

What would this quantity be if Rolle's Theorem applied?

The Mean Value Theorem: If $f(x)$ is continuous on $[a, b]$ and differentiable on $(a, b)$, then there is a number $c$ in the interval $(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

QUESTION: Assume that $f(x)$ is continuous and differentiable on the interval $[a, b]$ and assume there exists some $x$-value $d$ in $(a, b)$ such that $f(d)>f(a)$, can you draw any conclusion about $f^{\prime}(x)$ ? What if $f(d)<f(a)$ ?
If $f(d)>f(a)$, there has to be someplace where $f^{\prime}(x)>0$ on $[a, b]$.
If $f(d)<f(a)$, there has to be someplace where $f^{\prime}(x)<0$ on $[a, b]$.

THEOREM 5: If $f^{\prime}(x)=0$ for all $x$ in the interval $(a, b)$, then
$f(x)$ is constant or
$f(x)=C$ some real number $C$

QUESTION: If $f(x)$ gives the position of an object as a function of time, what "common sense" idea is the MVT telling us? Theorem 5?

On a trip, at some point, your car is going your averagespeed. If your velocity is always 0 , you dich't go anywhere.

1. Sketch the graph of a function $f(x)$ on an interval $[0,5]$ such that there are exactly three numbers $c$ in $(0,5)$ satisfying the Mean Value Theorem.

2. Suppose that $f(0)=-3$ and that $f^{\prime}(x)$ exists and is less than or equal to 5 for all values of $x$. How large can $f(2)$ possibly be?

$$
-3+2 \cdot 5=7
$$

3. Consider $f(x)=x^{-2}$ on the interval $[1,2]$.
(a) Verify that the function $f(x)$ satisfies the hypothesis of the Mean Value Theorem on the given interval.
$f$ is continuous $t$ differentiable on $[1,2]$.
(b) Find all numbers $c$ that satisfy the conclusion of the Mean Value Theorem.

$$
\begin{aligned}
& f(1)=1, f(2)=\frac{1}{4} \\
& \frac{f(2)-f(1)}{2-1}=\frac{1}{4}-1=\frac{-3}{4} \\
& f^{\prime}=-2 x^{-3} \\
& \frac{-2}{x^{3}}=\frac{-3}{4}
\end{aligned}
$$

(c) Sketch the graph to show that your answer above are correct.


One Last Big Idea:

1. Give the formulas for two different functions $f(x)$ and $g(x)$ such that $f^{\prime}(x)=g^{\prime}(x)$ and sketch these two functions on the same set of axes.
Many correct answers here.

2. Corollary 7: If $f^{\prime}(x)=g^{\prime}(x)$ for all $x$ in the interval $(a, b)$, then

$$
f(x)=g(x)+c, \quad c \text { some constant }
$$

or, said another way,
is $f+g$ are afreet distance vertical
away from each other.
3. Why is Corollary 7 true?

$$
\begin{aligned}
& \text { If } f^{\prime}=g \text {, then } f^{\prime}-g^{\prime}=0 \text { ? (algbm) } \\
& \text { If } H^{\prime}(x)=0 \text { every where then } H(x)=\square \text { ? (The } 5 \text { ) } \\
& \text { What is } \frac{d}{d x}[f(x)-g(x)]=f^{f^{\prime}(x)-g^{\prime}(x)} \text { ? ? ? ferencur Rule }
\end{aligned}
$$

