LECTURE NOTES: 4-5 CURVE SKETCHING (PART 2)

WARM UP PROBLEM Find your copy of the Graphing Guidelines! PRACTICE PROBLEMS

- 1. Sketch the curve $y = x 2\sin x$ on $[-2\pi, 2\pi]$.
 - (a) Find the domain.
 - (b) Find the *x* and *y*-intercepts.
 - (c) Find the symmetries / periodicity of the curve.
 - (d) Determine the asymptotes.
 - (e,f) Determine where the function is increasing / decreasing and find the local maximum / minimum values

(g) Find the intervals of concavity/inflection points.

(h) Sketch the curve.

- 2. Sketch the curve $y = \frac{x}{\sqrt{9+x^2}}$
 - (a) Find the domain.
 - (b) Find the *x* and *y*-intercepts.

- (c) Find the symmetries / periodicity of the curve.
- (d) Determine the asymptotes.
- (e,f) Determine where the function is increasing/ decreasing and find the local maximum/ minimum values

(g) Find the intervals of concavity/inflection points.

(h) Sketch the curve.

- 3. Sketch the curve $y = e^x/x^2$
 - (a) Find the domain.
 - (b) Find the *x* and *y*-intercepts.

(c) Find the symmetries/ periodicity of the curve.

(d) Determine the asymptotes.

(e,f) Determine where the function is increasing/ decreasing and find the local maximum/ minimum values

(g) Find the intervals of concavity/inflection points.

(h) Sketch the curve.