Lecture Notes: 4-8 Newton's Method
(PART 1)
Motivating Question: Recall that we wanted to find the x-intercepts of $f(x)=x-2 \sin x$. From the graph we knew there exists a positive (and negative) solution. How to find it?

WARM-UP PROBLEMS:

1. Write the equation of the line tangent to the curve $y=f(x)$ at the x-value x_{1}. Sketch the tangent line in the "cartoon" of $f(x)$ below

$$
\begin{array}{ll}
m=f^{\prime}\left(x_{1}\right) & \text { slope } \\
\left(x_{1}, f\left(x_{1}\right)\right) & \text { point }
\end{array}
$$

line: $y-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)$
or

$$
y=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)+f\left(x_{1}\right)
$$

2. In your picture above, label the x-value where the tangent line intersects the x-axis as x_{2}.
3. Solve for x_{2} using your equation from part (1) above.
x_{2} occurs when $y=0$. Set $y=0$ \& solve for x. here

$$
\begin{gathered}
0=f^{\prime}\left(x_{1}\right)\left(\sqrt{x}-x_{1}\right)+f\left(x_{1}\right) \\
-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right) \boxtimes-x_{1} f^{\prime}\left(x_{1}\right) \\
\left.x_{1} f^{\prime}\left(x_{1}\right)-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right) \cdot \underline{x}\right]
\end{gathered}
$$

 a really simple expression.

* There is nothing special about $x_{1} \rightarrow x_{2}$.

1. Factor $f(x)$, find its roots algebraically, and sketch its graph.

$$
f(x)=x\left(x^{2}-5\right)=x(x+\sqrt{5})(x-\sqrt{5})
$$

$\operatorname{roots} x=0,-\sqrt{5},+\sqrt{5}$

Can you draw a picture $>$ of the calculations you
just pier for med 1 Assume you couldn't factor the fin
2. Assume you couldn't factor the function and you wanted to find its positive root. What would be a reasonable first guess and why?

$$
\begin{array}{ll}
x=3, & f(3)=27-15=12>0 \\
x=2, & f(2)=8-10=-2<0
\end{array}
$$

So there's a positive root between $x=2$ and $x=3$.
Id pick $x=2.5$.
3. Using a first guess of $x_{1}=3$, calculate 2 iterations of Newton's method

Recall $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, f(x)=x^{3}-5 x, f^{\prime}(x)=3 x^{2}-5$ If $x_{1}=3$, then $x_{2}=3-\frac{f(3)}{f^{\prime}(3)}=3-\frac{27-15}{27-5}=3-\frac{12}{22} \approx 2.45454545$ /iteration If $x_{2}=2.45454545$, then $x_{3}=(2.45454545)-\frac{f(2.45454545)}{f^{\prime}(2.45454545)} \approx 2.26215377$
$\sqrt{5} \approx 2.23606798$. Difference: less than 0.0260 shabby.

QUESTIONS FOR YOU:

1. In general, when applying Newton's Method can there exist bad choices for x_{1} ? Explain.

- bad if $f^{\prime}\left(x_{i}\right)=0$.
- may converge to a different root.

2. Use Newton's Method to approximate any zeros of $g(x)=x-2 \sin x$ accurate to at least 9 decimal places. [NOTE: The FIRST thing you must do is make a guess at where that root might be. Make it a GOOD guess.]

Clearly $x=0$ is a zero of $g(x)$. Also, since $g(x)$ is an odd function, we know that if we find a positive root we will find the symmetric negative root simultaneously.

$$
g\left(\frac{\pi}{2}\right)=\frac{\pi}{2}-2 \sin \left(\frac{\pi}{2}\right)=\frac{\pi}{2}-2<0
$$

$$
g(\pi)=\pi-2 \sin (\pi)=\pi>0
$$

So there is a root between 1.5 and 3 . Pick $x_{1}=2$. Newton's Formula here is:

$$
x_{n+1}=x_{n}-\frac{x_{n}-2 \sin x_{n}}{1-2 \cos x_{n}}
$$

$$
\begin{aligned}
& x_{1}=2 \\
& x_{2}=2-\frac{2-2 \sin (2)}{1-2 \cos (2)} \approx 1.90099594
\end{aligned}
$$

$$
x_{3} \approx 1.895511645
$$

$x_{4} \approx 1.895494267$
$x_{5}=x_{4}$.
So $x= \pm 1.89549427,0$ are zens of $g(x)$.

3. Estimate $\sqrt[6]{7}$ correct to 5 decimal places. [Note: you must construct an appropriate $f(x)$ here.]
$f(x)=x^{6}-7$ will have $\sqrt[6]{7}$ as a root

$$
f(1)=-6<0, f(2)>0 \text {. Ill pick } x_{1}=1.1
$$

Newton's Formula would be:

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{\left(x_{n}\right)^{6}-7}{6 x_{n}^{5}}=x_{n}-\frac{1}{6} x_{n}+\frac{7}{6} x_{n}^{-5} \\
& =\frac{1}{6}\left(5 x_{n}+7 x_{n}^{-5}\right) \\
\text { If } x_{1} & =1.1, \text { then } x_{2}=\frac{1}{6}\left(5(1.1)+7(1.1)^{-5}\right) \\
& \approx 1.641074877 \\
x_{3} & \approx 1.465580165 \\
x_{4} & \approx 1.39386042 \\
x_{5} & \approx 1.383293572 \\
x_{6} & \approx 1.383087631
\end{aligned}
$$

4. Explain how Newton's Method could be used to find points of intersections between curves, say where $f(x)=-x / 3$ and $g(x)=\ln x$ intersect.

$$
\text { means }-\frac{x}{3}=\ln x \text { or }
$$

$$
f(x)=\ln x+\frac{x}{3}=0
$$

Use Newton's Method to find a root of $f(x)$.

