Motivating Question: Recall that we wanted to find the x-intercepts of $f(x)=x-2 \sin x$. From the graph we knew there exists a positive (and negative) solution. How to find it?

1. Write the equation of the line tangent to the curve $y=f(x)$ at the x-value x_{1}. Sketch the tangent line in the "cartoon" of $f(x)$ below.

2. In your picture above, label the x-value where the tangent line intersects the x-axis as x_{2}.
3. Solve for x_{2} using your equation from part (1) above.

MODEL PROBLEM: Let $f(x)=x^{3}-5 x$.

1. Factor $f(x)$, find its roots algebraically, and sketch its graph.
2. Assume you couldn't factor the function and you wanted to find its positive root. What would be a reasonable first guess and why?
3. Using a first guess of $x_{1}=3$, calculate 2 iterations of Newton's method

QUESTIONS FOR YOU:

1. In general, when applying Newton's Method can there exist bad choices for x_{1} ? Explain.
2. Use Newton's Method to approximate any zeros of $g(x)=x-2 \sin x$ accurate to at least 9 decimal places. [NOTE: The FIRST thing you must do is make a guess at where that root might be. Make it a GOOD guess.]
3. Estimate $\sqrt[6]{7}$ correct to 5 decimal places. [Note: you must construct an appropriate $f(x)$ here.]
4. Explain how Newton's Method could be used to find points of intersections between curves, say where $f(x)=-x / 3$ and $g(x)=\ln x$ intersect.
