Mean Value Theorem. If f is a continuous function on an interval $[a, b]$ that has a derivative at every point in (a, b), then there is a point c in (a, b) where

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

1. Suppose f is a continuous function on $[a, b]$ that has a derivative at every point of (a, b). Suppose also that $f(b) \leq f(a)$. What can you conclude from the Mean Value Theorem?

$$
\begin{aligned}
& \text { There is some } c \text { in }(a, b) \text { where } f^{\prime}(c) \leqslant 0 \\
& f(a) \\
& f(b)
\end{aligned}
$$

2. Suppose f is a continuous function on $[a, b]$ that has a derivative at every point of (a, b), and that $f^{\prime}(x)>0$ for each x in (a, b). Thinking about your answer to problem 1, what can you conclude about $f(a)$ and $f(b)$?
If $f^{\prime}>0$ everywhere, then $f(b)>f(a)$.

3. A function is said to be increasing on an interval (a, b) if whenever x and z are in the interval and $x<z$, then $f(x)<f(z)$. It is decreasing if whenever x and z are in the interval and $x<z$, then $f(x)>f(z)$ Sketch an example of a function that is increasing on $(1,3)$ and decreasing on $(3,5)$.

Increasing/Decreasing Test
Your answer to problem 2 implies the first item below; the second is justified by a similar argument.

- If $f^{\prime}(x)>0$ on an interval (a, b) then f is increasing on the interval.
- If $f^{\prime}(x)<0$ on an interval (a, b) then f is decreasing on the interval.

4. Use the increasing/decreasing test to find intervals where

$$
f(x)=\frac{2}{3} x^{3}+x^{2}-12 x+7
$$

is increasing and intervals where it is decreasing.

$$
\begin{aligned}
& f^{\prime}(x)=2 x^{2}-2 x-12 \quad \text { I need to find where } f^{\prime}>0 \text { and } f^{\prime}<0 \text {. } \\
& =2\left(x^{2}-x-6\right) \\
& =2(x-2)(x+3) \longleftrightarrow \\
& ++0-\cdots 0^{++++} \leftarrow \text { Sign of } f^{\prime} \\
& \underset{-4}{T} \\
& (\rightarrow)(-) \quad\left(-x_{+}\right) \quad(+n(t) \quad \text { in interval }
\end{aligned}
$$

$f^{\prime}=0$ when $x=2,-3$. answer: f is in creasing on $(-\infty,-3) \cup(2, \infty)$ and decreasing on $(-3,2)$.
5. Find the critical points of the function $f(x)=\frac{2}{3} x^{3}+x^{2}-12 x+7$ from the previous problem. There should be two, c_{1} and c_{2} with $c_{1}<c_{2}$. Just pay attention to c_{1}.
(a) Just to the left of c_{1} is the function increasing or decreasing? increasing
(b) Just to the right of c_{1} is the function increasing or decreasing? de creasing
(c) Now decide intuitively, based on these two observations, if f has a local min, local max, or neither at c_{1}.

answer: f has a local max at $x=-3$ That is $f(-3)=34$ is a local max
$-3=c_{1}$
Increasing decreasing
6. Repeat the previous exercise for the other critical point c_{2}.

answer: f has a local \min at $x=2$.
That is $f(2)=-7 . \overline{6}$ is a local min.

You have just sketched the argument that justifies the following:
First Derivative Test
Suppose f is a function with a derivative on (a, b), and if c is a point in the interval with $f^{\prime}(c)=0$.

- If $f^{\prime}(x)>0$ for x just to the left of c and $f^{\prime}(x)<0$ for x just to the right of c, then f has a local max

- If $f^{\prime}(x)<0$ for x just to the left of c and $f^{\prime}(x)>0$ for x just to the right of c, then f has a local min at c.

7. The function $f(x)=x e^{x}$ has exactly one critical point. Find it, and then use the First Derivative Test to determine if a local minimum or local maximum occurs there.

$$
\begin{aligned}
f^{\prime}(x) & =1 \cdot e^{x}+x \cdot e^{x} \\
& =e^{x}(1+x)
\end{aligned}
$$

C.p. $\quad x=-1$.

Check on either side of $x=-1$

answer
local min at $x=-1$ local min is $f(-1)=\frac{-1}{e}$
-1 0 $\quad \leftarrow$ pick pts on either side
8. Consider the function $f(x)=\frac{2}{3} x^{3}+x^{2}-12 x+7$. Find intervals such that the derivative of $f(x)$ is increasing or decreasing.

$$
\begin{aligned}
& \text { where is } \\
& \text { THis increasing/ } \\
& \text { THing. }
\end{aligned}
$$

answer
f^{\prime} is in creasing on $\left(\frac{1}{2}, \infty\right)$ and f^{\prime} is decreasing on $\left(-\infty, \frac{1}{2}\right)$.
9. Earlier you computed that $f^{\prime}(-3)=0$. Is f^{\prime} increasing near $x=-3$ or decreasing near $x=-3$? because) Which of the following two scenarios must we have?

positive \#'s decrease to negative \#'s 3
negative ty's increase to positive 4-3 number

$$
\begin{aligned}
& f^{\prime}(x)=2 x^{2}-2 x-12 \\
& \text { where is } \\
& \text { So } f^{\prime \prime}(x)=4 x-2=2(2 x-1)
\end{aligned}
$$

You have just sketched out justification for the following.
Second Derivative Test
Suppose f is a function with a continuous second derivative on (a, b), and that c is a point in the interval with $f^{\prime}(c)=0$.

- If $f^{\prime \prime}(c)>0$ then f has a local min at c. increasing f^{\prime} means - to f means $x \not x$
- If $f^{\prime \prime}(c)<0$ then f has a local max at c.
\qquad
decreasing f^{\prime} means t to means

10. Use the Second Derivative Test to determine if $f(x)=x e^{x}$ has a local min/ max at its only critical point.

$$
f^{\prime}(x)=e^{x}(1+x)
$$

$$
f^{\prime \prime}(-1)=e^{-1}(-1+2)=e^{-1}>0
$$

C. P. $x=-1$

$$
\begin{aligned}
f^{\prime \prime}(x) & =e^{x}(1+x)+1 \cdot e^{x} \\
& =e^{x}(x+2)
\end{aligned}
$$

So $f(-1)=\frac{-1}{e}$ is a local min.
11. Consider the function $f(x)=x^{3}$. Verify that $f^{\prime}(0)=0$. Then decide what the Second Derivative Test has to say, if anything, about whether a local $\mathrm{min} / \mathrm{max}$ occurs at $x=0$.

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \\
& f^{\prime \prime}(x)=6 x \\
& f^{\prime \prime}(0)=6 \cdot 0=0 \text {-neither positive nor negative. }
\end{aligned}
$$

The $2^{\text {rd }}$ Der Test is a bust. No info.
12. Decide what the First Derivative Test has to say, if anything, about whether a local min/max occurs at $x=0$ for $f(x)=x^{3}$.

$$
f^{\prime}(x)=3 x^{2}
$$

check sign f^{\prime} on either side of $x=0$.

The First DerTest tells
us neither max nor
min occurs her.

