1. Find $d f / d x$.
(a) $f(x)=\left(x^{3}+\cos x\right)^{2}$

$$
\frac{d f}{d x}=\underbrace{2\left(x^{3}+\cos x\right)}_{\frac{d f}{d u}} \underbrace{\left(3 x^{2}-\sin x\right)}_{\frac{d u}{d x}}
$$

2. Find:
(a) $\int\left(\frac{e^{z}}{4}+\frac{1}{1+z^{2}}-\frac{1}{2}\right) d z=\frac{1}{4} e^{z}+\arctan z-\frac{1}{2} z+C$

$$
\text { (b) } \begin{aligned}
\int_{1}^{2} \frac{1}{z^{2}}-\frac{2}{z^{3}} d z & \left.=\int_{1}^{2}\left(z^{-2}-2 z^{-3}\right) d z=-z^{-1}+z^{-2}\right]_{1}^{2} \\
& =\left(-\left(2^{-1}\right)+(2)^{-2}\right)-\left(-(1)^{-1}+1^{-2}\right) \\
& =-\frac{1}{2}+\frac{1}{4}-0=-\frac{1}{4}
\end{aligned}
$$

3. The velocity $v(t)$ of an object is given by $v(t)=(t-2)^{2}-1=t^{2}-4 t+3$ where v is measured in meters per second and t is measured in seconds.
(a) Find and interpret $v(0)$.

$$
V(0)=3
$$

Object going $3 \mathrm{~m} / \mathrm{s}$ when time starts.
(b) Find and interpret $\int_{\Delta s}^{1}=v \Delta t=\int_{0}^{v(t)} \underbrace{1}_{0}\left(t^{2}-4 t+3\right) d t=\frac{1}{3} t^{3}-2 t^{2}+3 t]_{0}^{1}$

$$
=\left(\frac{1}{3}-2+3\right)-(0)=\frac{4}{3} \mathrm{~m}
$$

The object went $4 / 3$ meter in the first second.
(c) Find and interpret $\int v(t) d t=\int\left(t^{2}-4 t+3\right) d t=\frac{1}{3} t^{3}-2 t^{2}+3 t+C$

So $S(t)=\frac{1}{3} t^{3}-2 t^{2}+3 t+C$, which gives the position of the object. We don't know it precisely bloc we don't know \subseteq.
(d) Now assume you know that when $t=0$ the object has position $s=5$ meters. How does this affect your answers to parts (a)-(c) above?
(2) This fact doesnit change anything.
(b) Now we know that the object started at $S=5$, So when $t=1$, the object is at position $5+\frac{4}{3}=\frac{19}{3} \mathrm{~m}$.
(c) We know the precise position function:

$$
\delta(t)=\frac{1}{3} t^{3}-2 t^{2}+3 t+5
$$

$$
V(t)=(t-2)^{2}-1
$$

$$
\begin{aligned}
& t=0, v=3 \\
& t-1, v=0
\end{aligned}
$$

$$
t=1, v=0
$$

$$
t=2, v=-1
$$

(e) Make a rough sketch of $v(t)$ and illustrate your answer from part (b) above. $\quad \boldsymbol{\epsilon}=\mathbf{\Omega}, \mathbf{v}=0$

$$
\int_{0}^{1} v(t) d t=a \arg
$$

(f) Find and interpret $\int_{0}^{3} v(t) d t$ and $s(3)$.

$$
S(3)=5 ; \int_{0}^{3} v(t) d t=0
$$

After 3 seconds, the object is back where it started, at position 5 m .
(g) Using $\int_{0}^{5} v(t) d t=20 / 3$, explain where the object is at $t=5$.

The object is in position $5+\frac{20}{3}=\frac{45}{3} \mathrm{~m}$.

(e) Make a rough sketch of $v(t)$ and illustrate your answer from part (b) above.
(f) Find and interpret $\int_{0}^{3} v(t) d t$ and $s(3)$.
(g) Using $\int_{0}^{5} v(t) d t=20 / 3$, explain where the object is at $t=5$.
(h) How far did the object travel from $t=0$ to $t=5$?

