5.3 AND 5.4

1. Find $d f / d x$.
(a) $f(x)=\left(x^{3}+\cos x\right)^{2}$
(b) $f(x)=\int_{1}^{x^{3}+\cos x} t e^{t} d t$
2. Find:
(a) $\int\left(\frac{e^{z}}{4}+\frac{1}{1+z^{2}}-\frac{1}{2}\right) d z$
(b) $\int_{1}^{2} \frac{1}{z^{2}}-\frac{2}{z^{3}} d z$
3. The velocity $v(t)$ of an object is given by $v(t)=(t-2)^{2}-1=t^{2}-4 t+3$ where v is measured in meters per second and t is measured in seconds.
(a) Find and interpret $v(0)$.
(b) Find and interpret $\int_{0}^{1} v(t) d t$
(c) Find and interpret $\int v(t) d t$
(d) Now assume you know that when $t=0$ the object has position $s=5$ meters. How does this affect your answers to parts (a)-(c) above?
(e) Make a rough sketch of $v(t)$ and illustrate your answer from part (b) above.
(f) Find and interpret $\int_{0}^{3} v(t) d t$ and $s(3)$.
(g) Using $\int_{0}^{5} v(t) d t=20 / 3$, explain where the object is at $t=5$.
(h) How far did the object travel from $t=0$ to $t=5$?
