1. State the definition of the derivative of a function $f(x)$ at $x=a$.
2. Let $f(x)=5 x^{2}-3 x$.
(a) Use the definition to find the derivative of $f(x)$.
(b) Find the slope of the tangent line to $f(x)$ when $x=-3$.
(c) Write the equation of the line tangent to $f(x)$ when $x=-3$.
3. Suppose N represents the number of people in the United States who travel by car to another state for a vacation this Memorial Day weekend when the average price of gasoline is p dollars per gallon.
(a) What are the units of $d N / d p$?
(b) In the context of the problem, write a sentence interpreting $\frac{d N}{d p}$.
(c) Would you expect $d N / d p$ to be positive or negative? Explain your answer.
4. The graph of $f(x)$ is sketched below. On a separate set of axes, give a rough sketch $f^{\prime}(x)$.

5. Find the domain of each function.
(a) $f(x)=\sqrt{x^{2}-x-6}$
(b) $g(t)=\ln (t+6)$
6. State the definition of "The function $f(x)$ is continuous at $x=a$ ".
7. Suppose

$$
f(x)=\left\{\begin{array}{cc}
-\frac{2}{x} & x<2 \\
\frac{x}{x-3} & x \geq 2
\end{array}\right.
$$

Is $f(x)$ continuous at $x=0$? At $x=2$? Justify your answers using the definition of continuity.
8. Find the limit or show that it does not exist. Make sure you are writing your mathematics correctly and clearly.
(a) $\lim _{x \rightarrow \infty} \frac{10^{x}-1}{3-10^{x}}$
(b) $\lim _{x \rightarrow \infty} \frac{\sqrt[3]{8 x^{3}+1}}{2-5 x}$
9. Consider a function with vertical asymptotes at $x=-1$ and $x=3$ and a horizontal asymptote at $y=4 / 3$.
(a) Write a formula for such a function.
(b) Sketch the graph of the function.
10. Solve for x.
(a) $e^{x-3}+2=6$
(c) $\ln x+\ln (x-1)=0$
(b) $\ln (x+5)-3=7$
(d) $\cos (8 x)=0$
11. Use the Intermediate Value Theorem to show $\ln x=x-5$ has a solution. (Hint: Show there is a solution in the interval $\left[1, e^{5}\right]$.)
12. Sketch each of the functions below. Label all x - and y-intercepts and asymptotes. State, in interval notation, the domain and range of each function next to its graph.
(a) $y=6-x^{4}$
(d) $y=\tan ^{-1} x$
(g) $y=-2 /(x+3)$
(b) $y=\sin (2 x)$
(e) $y=e^{x-1}+2$
(h) $y=\sqrt{x+5}$
(c) $y=\tan x$
(f) $y=\ln x$

