Name: \qquad
\qquad / 12

- There are 12 points possible on this proficiency, one point per problem. No partial credit will be given.
- You have one hour to complete this proficiency.
- No aids (book, calculator, etc.) are permitted.
- You do not need to simplify your expressions.
- Your final answers must start with $f^{\prime}(x)=, \frac{d y}{d x}=$, or similar.
- Draw a box around your final answer.

1. $u(x)=\left(e^{2}+e^{x}\right)\left(7-x^{-5}\right)$
2. $f(t)=\frac{1}{\sqrt[3]{t}}+\left(\frac{2+\pi t}{3}\right)^{4}$
3. $g(y)=\frac{\tan \left(y^{2}\right)}{1+\sin (y)}$
4. $y=\left(2 x^{2}+4\right) \arctan (x) \quad$ (note $\left.\arctan (x)=\tan ^{-1}(x)\right)$
5. $h(x)=\frac{x^{5}-a x+b}{x^{2}}$ (where a and b are constants)
6. $G(x)=e^{\cos \left(x^{2}\right)+2}$
7. $g(u)=\ln (2)+\ln (u)-\ln \left(u^{2}\right)$
8. $f(\theta)=2 \sin \left(\theta^{3}+2\right)$
9. $k(x)=e^{3 x} \cos (2 x)$
10. $F(x)=\csc (x)+(\sqrt{2}) x$
11. $g(t)=\frac{6}{\cos (t)}$
12. Compute $\frac{d y}{d x}$ if $x y-2 y=2+e^{y}$. You must solve for $\frac{d y}{d x}$.
