Name:	
Rules:	Circle your instructor:
• One point per problem, 12 points total.	Leah Berman
• No partial credit.	
• Time to complete: 1 hour.	Jill Faudree
• No aids (book, calculator, etc.) permitted.	
• You do not need to simplify your expressions.	James Gossell
• Show sufficient work to justify your final expression.	
\mathbf{r}	

• Final answers **must start with** $f'(x) =, \frac{dy}{dx} =$, or similar.

Compute the derivatives of the following functions. Each problem is worth 1 point for a total of 12 points.

1. $y = e^{x/2} \sin(1 - 4x)$

2.
$$f(x) = \frac{x - \ln(2)}{5} - \frac{1}{6x}$$

3.
$$L(t) = \ln(t^2 + \cos^2(t))$$

Math F251X: Derivative Proficiency

$$4. \ y(x) = \frac{\pi \sec(x)}{1 + \ln(x)}$$

5.
$$j(\theta) = \tan(\theta - \sqrt[3]{\theta^2 + 1})$$

6.
$$y = 4\log_{10}(x^2) + (\sin(x))^{-5}$$

Math F251X: Derivative Proficiency

8.
$$u(x) = (e^2 + e^x)(\sqrt{6} - x^2)$$

9.
$$f(x) = \frac{1}{x^2 + 1} + \frac{1}{\tan(x)}$$

Math F251X: Derivative Proficiency

10.
$$y = \sqrt{\frac{2^x}{x^3}}$$

11.
$$f(x) = x^k + e^{-kx} + 2k$$
, where k is a fixed constant

12. Find
$$\frac{dy}{dx}$$
 for $x^2y^2 + 2x = 2 + \ln(y)$. [You must solve for $\frac{dy}{dx}$.]