Name: \qquad

- There are 12 points possible on this proficiency, one point per problem. No partial credit will be given.
- A passing score is $10 / 12$.
- You have 60 minutes to complete this proficiency.
- No aids (book, calculator, etc.) are permitted.
- You do not need to simplify your expressions.
- You must show sufficient work to justify your final expression; a correct answer for a nontrivial computation with no supporting work will be marked as incorrect.
- Your final answers must start with $f^{\prime}(x)=, d y / d x=$, or similar.
- Circle or box your final answer.

1. [12 points] Compute the derivatives of the following functions.
a. $f(x)=e^{2} x^{1 / 2}+2 e^{x}+\sqrt{9}$

$$
f^{\prime}(x)=\frac{e^{2}}{2} x^{-1 / 2}+2 e^{x}
$$

b. $r(x)=\left(x^{4}-x^{2}\right) \sin (x)$

$$
r^{\prime}(x)=\left(4 x^{3}-2 x\right) \sin (x)-\left(x^{4}-x^{2}\right) \cos x
$$

c. $h(x)=\sin \left(k x^{2}-5\right)$ where k is a constant.

$$
h^{\prime}(x)=\cos \left(k x^{2}-5\right) \cdot(2 k x)
$$

d. $g(x)=\frac{2}{x}+\frac{x^{3}}{\sqrt{5}}$

$$
g^{\prime}(x)=-\frac{2}{x^{2}}+\frac{3 x^{2}}{\sqrt{5}}
$$

e. $f(x)=\frac{1}{\sin (x)}$

$$
f^{\prime}(x)=-\frac{1}{\sin ^{2}(x)} \cdot \cos (x)
$$

f. $y=\frac{\cos (2 x)}{x^{5}+\pi}$

$$
y^{\prime}=\frac{-\sin (2 x) \cdot 2 \cdot\left(x^{5}+\pi\right)-5 x^{4} \cdot \cos (2 x)}{\left(x^{5}+\pi\right)^{2}}
$$

g. $w(x)=\ln \left(\cos \left(x^{3}\right)-4 x^{7}\right)$

$$
w^{\prime}(x)=\frac{1}{\cos \left(x^{3}\right)-4 x^{2}} \cdot\left(-\sin \left(x^{3}\right) \cdot 3 x^{2}-28 x^{6}\right)
$$

h. $f(x)=\arctan (\sqrt{1+x})$

$$
f^{\prime}(x)=\frac{1}{1+(1+x)} \cdot \frac{1}{2 \sqrt{1+x}}
$$

i. $h(x)=x^{4} \tan (x) \sin (x)$

$$
\begin{aligned}
& h^{\prime}(x)=\left(4 x^{3} \tan (x)+x^{4} \sec ^{2}(x)\right) \sin (x)+ \\
& +x^{4} \tan (x) \cdot \cos (x)
\end{aligned}
$$

j. $r(x)=\sin \left(\ln \left(1+x^{2}\right)\right)$

$$
r^{\prime}(x)=\cos \left(\ln \left(1+x^{2}\right)\right) \cdot \frac{1}{1+x^{2}} \cdot 2 x
$$

k. $g(x)=\sec \left(x e^{x}\right)$

$$
g^{\prime}(x)=\sec \left(x e^{x}\right) \cdot \tan \left(x \cdot e^{x}\right) \cdot\left(e^{x}+x e^{x}\right)
$$

I. Compute $d y / d x$ if $\quad e^{y} \cos (x)=x y+1$. You must solve for $d y / d x$.

$$
\begin{gathered}
\frac{d}{d x}\left(e^{y} \cos (x)\right)=\frac{d}{d x}(x y+1) \\
e^{y} \cdot y^{\prime} \cos (x)+e^{y}(-\sin x)=y+x y^{\prime} \\
y^{\prime}\left(e^{y} \cos (x)-x\right)=y+e^{y} \sin (x) \\
y^{\prime}=\frac{y+e^{y} \sin (x)}{e^{y} \cos (x)-x}
\end{gathered}
$$

