Name:

Instructor (circle): Maxwell Jurkowski Sus

- There are 12 points possible on this proficiency, one point per problem. No partial credit.
- A passing score is 10/12.
- You have 60 minutes to complete this proficiency.
- No aids (book, calculator, etc.) are permitted.
- You do **not** need to simplify your expressions.
- You must show sufficient work to justify your final expression; a correct answer for a nontrivial computation with no supporting work will be marked as incorrect.
- Your final answers **must start with** f'(x) = dy/dx = dy/dx, or similar.
- Circle or box your final answer.

All students must affirm the following statements by initialing in the blanks provided. Students using their own paper must write out the statements in full.

I will not seek or accept help from anyone.

_____ I will not use a calculator, books, notes, the internet or other aids.

_____ I understand that a correct answer without sufficient supporting work will be marked as incorrect.

1. [12 points] Compute the derivatives of the following functions.

a.
$$f(x) = e^2 \sqrt{x} + \frac{x^9}{\pi} - \sqrt[3]{5}$$

f'(x) = $\frac{e^2}{2\sqrt{x}} + \frac{9x^3}{\pi}$

b.
$$g(x) = \tan(x)\cos(x)$$

$$q'(x) = \operatorname{Sec}^2(x) \cos(x) - \tan(x) \sin(x)$$

c.
$$h(t) = \frac{t^4}{t^3 - 2}$$

 $h'(t) = \frac{ht^3(t^3 - 2) - t^4 \cdot 3t^2}{(t^3 - 2)^2}$

March 29, 2021

d. $g(x) = e^{\sin(\alpha x)}$ where α is a constant.

$$g'(x) = e^{\sin(\alpha x)} \cdot \cos(\alpha x) \cdot d$$

e.
$$f(x) = \frac{e^x \cos(x)}{1+x}$$

 $f'(x) = \frac{(e^x \cos(x) - e^x \sin(x))(1+x) - e^x \cos(x)}{(1+x)^2}$

$$f. \ y = x^3 \sin(e^x)$$

$$y' = 3x^2 \operatorname{Sin}(e^x) + x^3 \cos(e^x) \cdot e^x$$

g.
$$k(x) = \sin(x)\ln(x)\cos(7x - \pi)$$

$$k'(x) = \left(\cos(x)\ln(x) + \sin(x)\frac{1}{x}\right)\cos(7x-T) + \\ + \sin(x)\ln(x)\left(-7\sin(7x-T)\right)$$

h.
$$f(x) = \sec\left(\frac{1}{1+x}\right)$$

 $f'(x) = \sec\left(\frac{1}{1+x}\right)\tan\left(\frac{1}{1+x}\right)\left(-\frac{1}{(1+x)^2}\right)$

$$i. \ y = \sin(\sqrt{1 - x^2})$$

$$y' = \cos(\sqrt{1-x^2}) \cdot \frac{1}{2\sqrt{1-x^2}} \cdot (-2x)$$

j.
$$s(\theta) = \tan(\theta^2 \ln(\theta))$$

$$S'(\Theta) = Sec^2(\Theta^2 ln(\Theta)) \cdot (20 ln(\Theta) + \Theta^2 \cdot \frac{1}{\Theta})$$

k. $w(r) = \ln(\arctan(r))$

$$W'(r) = \frac{1}{\operatorname{archan}(r)} \cdot \frac{1}{1+r^2}$$

I. Compute dy/dx if $\sin(y)x = x^3y$. You must solve for dy/dx.

$$\frac{d}{dx} \left(\sin(y)x \right) = \frac{d}{dx} \left(x^{3}y \right)$$

$$\cos(y) \cdot y' \cdot x + \sin(y) = 3x^{2} \cdot y + x^{3}y'$$

$$y' \left(\cos(y) \cdot x - x^{3} \right) = 3x^{2} \cdot y - \sin(y)$$

$$y' = \frac{3x^{2}y - \sin(y)}{x \cos(y) - x^{3}}$$