Name: ____

- There are 12 points possible on this proficiency, one point per problem. No partial credit will be given.
- You have one hour to complete this proficiency.
- No aids (book, calculator, etc.) are permitted.
- You do **not** need to simplify your expressions.
- You must show sufficient work to justify your final expression. A correct answer for a nontrivial computation with no supporting work will be marked as incorrect.
- Your final answers **must start with** $f'(x) =, \frac{dy}{dx} =$, or similar.
- Draw a box around your final answer.
- 1. [12 points] Compute the derivatives of the following functions.

a. $f(t) = e^t (5 - t^3)$

b.
$$f(x) = \frac{\pi}{\sin x}$$

c.
$$r(\theta) = \cot\left(2\sqrt{3} + \theta^5\right)$$

Math F251X: Derivative Proficiency

$$\mathbf{d.} \ f(r) = \frac{r^3 + \sqrt{r} - 8}{r}$$

e.
$$G(x) = \left(\frac{x - \ln(3)}{2}\right)^4 - \sqrt{x + 3}$$

f.
$$g(z) = (7-z)(z^3+6)$$

Math F251X: Derivative Proficiency

g. $y(t) = \ln(4t + \sin(t^2))$

h. $y = x^{1/3} + e^{-x}\cos(x)$

i.
$$f(x) = \frac{3 \sec(ax)}{2x^3}$$
 (where *a* is a constant)

Math F251X: Derivative Proficiency

j. $f(y) = 5^y + \tan(y^{-2})$

k. $g(x) = \arctan(e^{2x})$

I. Compute $\frac{dy}{dx}$ if $\ln y - x^2y = 2x + 8$. You must solve for $\frac{dy}{dx}$.