Name: ____

- There are 12 points possible on this proficiency, one point per problem. No partial credit will be given.
- You have one hour to complete this proficiency.
- No aids (book, calculator, etc.) are permitted.
- You do **not** need to simplify your expressions.
- You must show sufficient work to justify your final expression. A correct answer for a nontrivial computation with no supporting work will be marked as incorrect.
- Your final answers **must start with** $f'(x) =, \frac{dy}{dx} =$, or similar.
- Draw a box around your final answer.
- **1. [12 points]** Compute the derivatives of the following functions.

a. $f(t) = (\pi - t^5) \sin(t)$

b.
$$f(x) = \frac{\ln(x)}{e^x}$$

c.
$$g(z) = (z + e^5)(e^2 - z^3)$$

25 March, 2025

Math F251X: Derivative Proficiency

d.
$$r(\alpha) = \ln\left(\alpha^4 - \frac{\pi}{4}\right)$$

e.
$$g(y) = \frac{y^{5/2} + y^{-1} - \sqrt{5}}{\sqrt{y}}$$

f.
$$F(x) = \sqrt{\frac{\ln(5) - x}{2}} - (x+3)^5$$

Math F251X: Derivative Proficiency

g. $y(t) = \cos(5t^2 + \ln(t^3))$

h.
$$f(x) = \frac{4x^a}{3\tan(ax)}$$
 (where *a* is a constant)

i.
$$f(y) = \log_5(y) + \cot(y^{-3})$$

Math F251X: Derivative Proficiency

j. $y = x^{2.7} + \sec^2(3x)\ln(-x)$

k. $g(\theta) = \cos(\theta^2) \arccos(\theta^2)$

I. Compute $\frac{dy}{dx}$ if $x^2 + y^2 = 16 + 3xy^2$. You must solve for $\frac{dy}{dx}$.