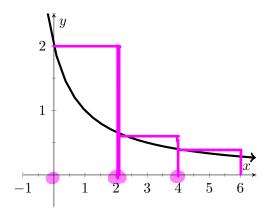
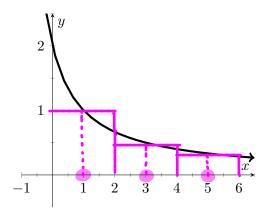
Math 251 Fall 2017


Quiz #10, November 22nd


Name: Solutions

There are 25 points possible on this quiz. This is a closed book quiz. Calculators and notes are not allowed. **Please show all of your work!** If you have any questions, please raise your hand.

Exercise 1. (9 pts.) Estimate the area under $f(x) = \frac{2}{x+1}$ from x = 0 to x = 6 using three approximating rectangles and

(a.) left endpoints. Sketch the rectangles on the graph below. Sketch the graph below. Sketch the rectangles on the graph below.

$$L_{3} = 2(f(0) + f(2) + f(4))$$

$$= 2(\frac{2}{0+1} + \frac{2}{2+1} + \frac{2}{4+1})$$

$$= 2(2 + \frac{2}{3} + \frac{2}{5}) = 2(\frac{30+10+6}{15})$$

$$= \frac{2 \cdot 46}{15} = \frac{92}{15} = 6\frac{2}{15}$$

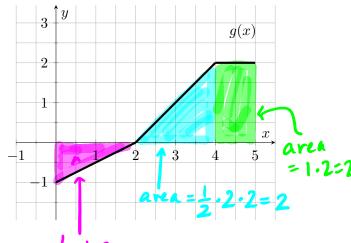
$$M_{3} = 2(f(1) + f(3) + f(5))$$

$$= 2\left(\frac{2}{1+1} + \frac{2}{3+1} + \frac{2}{5+1}\right)$$

$$= 2\left(1 + \frac{1}{2} + \frac{1}{3}\right) = 2\left(\frac{6+3+2}{6}\right)$$

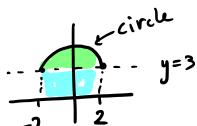
$$= \frac{11}{3} = 3\frac{2}{3}$$

Exercise 2. (3 pts.) The speed of a skier increased steadily during the first three seconds of a race. Her speed at half-second intervals is given in the table. Find a lower estimate for the distance she traveled during the first three seconds. Include units with your answer.


time (in seconds)	0	0.5	1	1.5	2	2.5	3
velocity (in feet/sec)	0	6	12	16	20	22	24
						\neg	

Circle your Instructor:

Faudree, Williams, Zirbes


_____ / 25

Exercise 3. (4 pts.) Use the graph of g(x) to evaluate the integral $\int_0^5 g(x) \, dx$.

area = 1.1.2=1

Exercise 4. (4 pts.) Evaluate the integral $\int_{-2}^{2} (\sqrt{4-x^2}+3) dx$ by interpreting it in terms of areas.

top of shifted circle 3 units up

$$\int_{-2}^{2} \sqrt{4-x^{2}+3} dx = \frac{1}{2}\pi \cdot 2^{2} + 3\cdot 4 = 2\pi + 12$$

Exercise 5. (5 pts.) Assume that $\int_1^5 f(x) dx = 8$. Use this fact and the properties of integrals to evaluate the integrals below.

(a.)
$$\int_{5}^{1} f(x) dx = -8$$
The limits are reversed

(b.)
$$\int_{1}^{5} (7 - 2\pi f(x)) dx$$

= $\int_{1}^{5} 7 - 2\pi \int_{1}^{5} f(x) dx$

$$=7(5-1)-2\pi \cdot 8$$

= 28 - 16 π