Math 251 Fall 2017

_____ / 25

Name: ____

There are 25 points possible on this quiz. This is a closed book quiz. Calculators and notes are not allowed. **Please show all of your work!** If you have any questions, please raise your hand.

Exercise 1. (3 pts.) Let
$$g(x) = \int_0^x f(t)dt$$
 where the graph of $y = f(t)$ is displayed below.
(a) Find $g(3) = \int_0^3 f(t) dt$
(b) In the open interval (0,7), when does $g(x)$
have a maximum?
 $at x = 3$
(c) When is $g(x)$ increasing? when
 $g'(x) = f(x)$ is possible or $g(x)$
 $f(t)$
(c) When is $g(x)$ increasing? when
 $g'(x) = f(x)$ is possible or $g(x)$
 $f(t) = \int_0^x f(t) dt$
(c) When is $g(x)$ increasing? when
 $g'(x) = f(x)$ is possible or $g(x)$
 $f(t) = \int_0^x f(t) dt$
(b) $F(x) = \int_0^{x^3} \sqrt{1 + t^4} dt$

$$g^{3}(x) = -\frac{d}{\partial x} \int_{1}^{x} \cos t \, dt \qquad F^{3}(x) = \sqrt{1 + (x^{3})^{4}} \cdot 3x^{2}$$
$$= \boxed{3x^{2}\sqrt{1 + x^{1/2}}}$$

Exercise 3. (3 pts.) What, if anything, is wrong with the following calculation?

$$\int_0^5 \frac{1}{x-2} dx = \ln|x-2||_0^5 = \ln 3 - \ln 2$$

The function $f(x) = \frac{1}{x-z}$ is discontinuous at x=2, and thus this integral does not exist.

Exercise 4. (6 pts.) Evaluate the following integrals.

(a)
$$\int_{0}^{\pi/4} (\sec^{2}t - 2e^{t}) dt$$

= $(\tan t - 2e^{t}) \Big|_{0}^{\pi/4}$ = 4 arcsin x $\Big|_{0}^{1/2}$
= $\tan \pi/4 - 2e^{\pi/4} - (0-2)$ = 4 arcsin(1/2) - 4 arcsin 0
= $1 - 2e^{\pi/4} + 2$ = 4 $(\pi/6)$
 $3 - 2e^{\pi/4}$ = 2

Exercise 5. (8 pts.) Evaluate the following integrals.

v-1

_