Math 251 Fall 2017
Quiz \#11, November 29th
Name:
There are 25 points possible on this quiz. This is a closed book quiz. Calculators and notes are not allowed. Please show all of your work! If you have any questions, please raise your hand.
Exercise 1. (3 pts.) Let $g(x)=\int_{0}^{x} f(t) d t$ where the graph of $y=f(t)$ is displayed below.

(a) Find $g(3)=\int_{0}^{3} f(t) d t$

$$
=2+1 / 2=2.5
$$

(b) In the open interval $(0,7)$, when does $g(x)$ have a maximum?

$$
\text { at } x=3
$$

(c) When is $g(x)$ increasing?
when $g^{\prime}(x)=f(x)$ is positive
so on $(0,3) v(4,7)$
when $g^{\prime}(x)=f(x)$ is positive
so on $(0,3) v(4,7)$
Exercise 2. (5 pts.) Find the derivative of the function.
(a) $g(x)=\int_{x}^{2} \sin t d t=-\int_{2}^{x} \sin t d t$
(b) $F(x)=\int_{0}^{x^{2}} \sqrt{2+t^{3}} d t$

$$
g^{\prime}(x)=-\sin x
$$

$$
\begin{gathered}
F^{\prime}(x)=2 x \sqrt{2+\left(x^{2}\right)^{3}} \\
F^{\prime}(x)=2 x \sqrt{2+x^{6}}
\end{gathered}
$$

Exercise 3. (3 pts.) What, if anything, is wrong with the following calculation?

$$
\int_{0}^{5} \frac{1}{x-3} d x=\left.\ln |x-3|\right|_{0} ^{5}=\ln 2-\ln 3=\ln \left(\frac{2}{3}\right)
$$

The function $f(x)=\frac{1}{x-3}$ is not continuous on $[0,5]$ and thus the integral does not exist.

Exercise 4. (6 pts.) Evaluate the following integrals.

$$
\begin{aligned}
& \text { (a) } \int_{0}^{\pi / 4}\left(2 \sec ^{2} t-e^{t}\right) d t \\
& =\left.\left(2 \tan t-e^{t}\right)\right|_{0} ^{\pi / 4} \\
& =2 \tan \pi / 4-e^{\pi / 4}-(0-1) \\
& =3-e^{\pi / 4}
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
\int_{0}^{1 / 2} \frac{2}{\sqrt{1-x^{2}}} d x & =2 \arcsin \times\left.\right|_{0} ^{1 / 2} \\
& =2 \arcsin 1 / 2-2 \arcsin 0 \\
& =2(\pi / 6) \\
& =\pi / 3
\end{aligned}
$$

Exercise 5. (8 pts.) Evaluate the following integrals.

$$
\begin{aligned}
& \text { (a) } \int_{0}^{1}\left(v^{2}+3\right)^{2} d v \\
& =\int_{0}^{1}\left(v^{4}+6 v^{2}+9\right) d v \\
& =\left.\left(\frac{1}{5} v^{5}+2 v^{3}+9 v\right)\right|_{0} ^{1} \\
& =\frac{1}{5}+2+9 \\
& =\frac{1}{5}+\frac{55}{5} \\
& =\frac{56}{5} \\
& \text { (b) } \\
& \text { (b) } \int_{1}^{9} \frac{(3-t)}{\sqrt{t}} d t=\int_{1}^{9}\left(3 t^{-1 / 2}-t^{1 / 2}\right) d t \\
& =\left.\left(6 t^{1 / 2}-\frac{2}{3} t^{3 / 2}\right)\right|_{1} ^{9} \\
& =18-\frac{2}{3}(27)-(6-2 / 3) \\
& =18-18-6+2 / 3 \\
& =-18 / 3+2 / 3 \\
& =\frac{-16}{3}
\end{aligned}
$$

