Math 251 Fall 2017

_____ / 25

Name: _____

There are 25 points possible on this quiz. This is a closed book quiz. Calculators and notes are not allowed. **Please show all of your work!** If you have any questions, please raise your hand.

The set of the derivative of the function.

$$F(x) = \int_{0}^{x} f(t)dt \text{ where the graph of } y = f(t) \text{ is displayed below.}$$
(a) Find $g(2) = \int_{0}^{2} f(t) \Delta t$

$$= 2 + 1 = \boxed{3}$$
(b) In the open interval (0,7), when does $g(x)$
have a maximum?

$$\boxed{\Delta t \ x = 2}$$
(c) When is $g(x)$ increasing?
where $g^{2}(x) = f(x)$ is $f(x)$ is $f(x) = f(x)$ is $f(x) = f(x)$.

Exercise 3. (3 pts.) What, if anything, is wrong with the following calculation?

$$\int_{0}^{6} \frac{1}{x-4} dx = \ln |x-4| \Big|_{0}^{6} = \ln 2 - \ln 4 = \ln \left(\frac{2}{4}\right) = \ln \left(\frac{1}{2}\right)$$

As the function $f(x) = \frac{1}{x-4}$ is not continuous
on [0,6] this integral does not exist.

Exercise 4. (6 pts.) Evaluate the following integrals.

(a)
$$\int_{0}^{\pi/4} (2 \sec^{2} t - e^{t}) dt$$

= $(2 \tan t - e^{t}) \int_{0}^{\pi/4} = 3 \arcsin x \int_{0}^{1/2} \frac{1}{\sqrt{1 - x^{2}}} dx$
= $3 \operatorname{arcsin} x \int_{0}^{1/2} \frac{1}{\sqrt{1 - x^{2}}} dx$
= $3 \operatorname{arcsin} x \int_{0}^{1/2} \frac{1}{\sqrt{1 - x^{2}}} dx$
= $3 \operatorname{arcsin} (\sqrt{2}) - 3 \operatorname{arcsin} 0$
= $3 - e^{\pi/4}$
= $3 (\pi/6)$
= $\pi/2$

Exercise 5. (8 pts.) Evaluate the following integrals.

(a)
$$\int_{0}^{1} (v^{2} + 1)^{2} dv$$

 $= \int_{0}^{1} (v^{2} + 1)^{2} dv$
 $= \left(4 + \frac{1}{2} - \frac{2}{3} + \frac{3}{2} \right) \Big|_{1}^{4}$
 $= 8 - \frac{2}{3} (8) - (4 - \frac{2}{3})$
 $= 4 - \frac{1}{3} + \frac{2}{3}$
 $= \frac{12}{3} - \frac{14}{3}$
 $= \left[\frac{28}{15}\right]$
 $= \left[\frac{28}{15}\right]$

v-3