Circle your Instructor:

Faudree, Williams, Zirbes

Name:

\qquad
There are 25 points possible on this quiz. This is a closed book quiz. Calculators and notes are not allowed. Please show all of your work! If you have any questions, please raise your hand.
Exercise 1. (3 pts.) Let $g(x)=\int_{0}^{x} f(t) d t$ where the graph of $y=f(t)$ is displayed below.

(a) Find $g(2)$
(b) In the open interval $(0,7)$, when does $g(x)$ have a maximum?
(c) When is $g(x)$ increasing?

Exercise 2. (5 pts.) Find the derivative of the function.
(a) $g(x)=\int_{x}^{2} \sec ^{2} t d t$
(b) $F(x)=\int_{0}^{x^{4}} \sqrt{1+t^{2}} d t$

Exercise 3. (3 pts.) What, if anything, is wrong with the following calculation?

$$
\int_{0}^{6} \frac{1}{x-4} d x=\left.\ln |x-4|\right|_{0} ^{6}=\ln 2-\ln 4=\ln \left(\frac{2}{4}\right)=\ln \left(\frac{1}{2}\right)
$$

Circle your Instructor:

Faudree, Williams, Zirbes

Exercise 4. (6 pts.) Evaluate the following integrals.
(a) $\int_{0}^{\pi / 4}\left(2 \sec ^{2} t-e^{t}\right) d t$
(b) $\int_{0}^{1 / 2} \frac{3}{\sqrt{1-x^{2}}} d x$

Exercise 5. (8 pts.) Evaluate the following integrals.
(a) $\int_{0}^{1}\left(v^{2}+1\right)^{2} d v$
(b) $\int_{1}^{4} \frac{(2-t)}{\sqrt{t}} d t$

