_ / 25

Math 251 Fall 2017 Name: Solution S

There are 25 points possible on this quiz. This is a closed book quiz. Calculators and notes are not allowed. **Please show all of your work!** If you have any questions, please raise your hand.

Exercise 1. (9 pts.) Use the graph of the function of f(x) to answer the following questions.

Exercise 2. (5 pts.) Evaluate the limit below and justify your answer. **Note:** The 5 points for this problem are distributed as: 1 point for the correct answer, 4 points for a clearly written justification using complete sentences.

$$\lim_{x \to 2^+} \frac{x^2 + 3}{2 - x} = - \infty$$

As x approaches 2 from above, 2-x approaches zero but is negative. The numerator approaches 2²+3=7, a positive nonzero number. So the quotient is unbounded. Its sign is negative. *Exercise* 3. (6 pts.) The position of a car is given by values in the table below. **Include units** in your answers.

t (seconds)	0	1	2	3	4	5
s (feet)	0	11	32	70	119	179

(a.) Find the average velocity of the car over the time interval [1, 2].

average =
$$\frac{\Delta S}{\Delta t} = \frac{32-11}{2-1} = 21$$
 ft/sec

(b.) Find the average velocity of the car over the time interval [2,3].

average =
$$\frac{\Delta S}{\Delta t} = \frac{70 - 32}{3 - 2} = \frac{38}{1} = 38 \text{ ft/sec}$$

(c.) Give a rough estimate of the instantaneous velocity at t = 2.

average the
velocities =
$$\frac{38+21}{2} = \frac{59}{2} = 29.5 \text{ ft/sec}$$

on left t right

Exercise 4. (5 pts.) On the axes below, sketch the graph of the function $f(x) = \begin{cases} (x+2)^2 & \text{if } x < -2\\ \frac{1}{2}x+1 & \text{if } -2 \le x < 4\\ |x-6| & \text{if } 4 \le x. \end{cases}$

Use the graph to determine the values of *a* for which $\lim_{x\to a} f(x)$ does not exist and, for each *a*-value, justify your answer.

