Circle your Instructor:

Faudree, Williams, Zirbes

Math 251 Fall 2017
Quiz \#4, October 3rd
Name: Solutions
There are 25 points possible on this quiz. This is a closed book quiz. Calculators and notes are not allowed. Please show all of your work! If you have any questions, please raise your hand.
Exercise 1. (5 pts.) Find the derivatives of the following functions.
(a) $g(x)=\frac{3}{x^{4}}=3 \mathrm{X}^{-4}$
(b) $f(x)=e^{4}<\begin{aligned} & \text { That's } \\ & \text { a } \\ & \text { constant! }\end{aligned}$
(c) $y=x^{e}$
(power rule!)
$g^{\prime}(x)=-12 x^{-5}$

$y^{\prime}=e x^{e-1}$

Exercise 2. (3 pts.) Differentiate the function $H(u)=(3 u-1)(2 u+4)$. Simplify your derivative.
(product rule)

$$
\begin{array}{rlrl}
H^{\prime}(u) & =(3 u-1) \cdot 2+3 \cdot(2 u+4) & & \begin{array}{l}
\text { or: multiply first } \\
\end{array} \\
& =6 u-2+6 u+12 & H(u)=6 u^{2}-2 u+12 u-
\end{array}
$$

Exercise 3. (4 pts.) Differentiate the function $y=\frac{1-6 x+x^{2}}{\sqrt{x}}$. Simplify your derivative.
Simplify y first

$y^{\prime}=-\frac{1}{2} x^{-3 / 2}-3 x^{-1 / 2}+\frac{3}{2} x^{1 / 2}$

Exercise 4. (5 pts.) Where is the tangent line to $y=e^{x}-2 x+1$ parallel to $4 x-y=1$?
The line $4 x-y=1$ or $y=4 x-1$ has slope $m=4$.

$$
y^{\prime}=e^{x}-2
$$

We wart to find x so that: $e^{x}-2=4$

$$
\begin{aligned}
& e^{x}=6 \\
& x=\ln 6
\end{aligned}
$$

Exercise 5. (4 pts.) Find the derivative of $G(x)=\frac{2 x+5}{x^{2}+1}$. Simplify your derivative.
quotient rule

$$
\begin{aligned}
& G^{\prime}= \frac{\left(x^{2}+1\right)(2)-(2 x+5)(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{2 x^{2}+2-\left(4 x^{2}+10 x\right)}{\left(x^{2}+1\right)^{2}}=\frac{2 x^{2}+2-4 x^{2}-10 x}{\left(x^{2}+1\right)^{2}} \\
& \quad=\frac{-2 x^{2}-10 x+2}{\left(x^{2}+1\right)^{2}}=\frac{-2\left(x^{2}+5 x-1\right)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Exercise 6. (4 pts.) Find the derivative of $f(x)=\stackrel{\text { h }}{2 x e^{x}}$. Simplify your derivative.
product rule

$$
\begin{aligned}
& =\frac{h}{2 x} \cdot e^{x}+2 \cdot e^{\prime}+h^{\prime} \cdot g \\
= & 2 e^{x}(x+1)
\end{aligned}
$$

