Circle your Instructor:

Faudree, Williams, Zirbes

Math 251 Fall 2017

Name: Solutions
There are 25 points possible on this quiz. This is a closed book quiz. Calculators and notes are not allowed. Please show all of your work! If you have any questions, please raise your hand.
Exercise 1. (4 pts.) Find $\frac{d y}{d x}$ by implicit differentiation for $\cos y=x^{2}-y$.

$$
\begin{aligned}
& \frac{d}{d x} \cos y=\frac{d}{d x}\left[x^{2}-y\right] \\
& -\sin (y) \cdot y^{\prime}=2 x-y^{\prime} \\
& y^{\prime}(1-\sin (y))=2 x
\end{aligned}
$$

Exercise 2. (6 pts.) Find the derivatives of the following functions.
chair rube
(a) $f(x)={\underset{\sim}{u}}_{u}^{x} \underbrace{\arccos (2 x)}_{v}$
(b) $g(x)=\arctan (\sqrt{x})$
$f^{\prime}(x)=u^{\prime} v+u v^{\prime}$
$g^{\prime}(x)=\frac{1}{1+(\sqrt{x})^{2}} \cdot \frac{1}{2 \sqrt{x}}$
$f^{\prime}(x)=1 \cdot \arccos (2 x)+x \cdot \frac{-1}{\sqrt{1-4 x^{2}}} \cdot 2$
$=\frac{1}{2 \sqrt{x}+2 x \sqrt{x}}$
$=\arccos (2 x)-\frac{2 x}{\sqrt{1-4 x^{2}}}$
chain rule!
Exercise 3. (3 pts.) Find the derivative of the function $g(x)=\sqrt{\ln x}$.

$$
g^{\prime}(x)=\frac{1}{2 \sqrt{\ln (x)}} \cdot \frac{1}{x}=\frac{1}{2 x \sqrt{\ln (x)}}
$$

Exercise 4. (4 pts.) Use logarithmic differentiation to find the derivative of the function

$$
\begin{aligned}
& \ln (y)=\ln \left([\sin (x)]^{2 x}\right) \quad y=(\sin x)^{2 x} \\
& \ln (y)=2 x \ln (\sin x) \\
& \frac{1}{y} \cdot y^{\prime}=2 \ln (\sin x)+2 x \cdot \frac{1}{\sin x} \cdot \cos (x) \\
& y^{\prime}=[2 \ln (\sin x)+2 x \cos x](\sin (x))^{2 x}
\end{aligned}
$$

Exercise 5. (8 pts.) The position function of a particle is given by $s=\frac{1}{3} t^{3}-3 t^{2}+5 t$ where t is measured in seconds and s in meters. Further, assume the first and second derivatives are $s^{\prime}(t)=t^{2}-6 t+5$ and $s^{\prime \prime}(t)=2 t-6$.
a.) What is the velocity function of the particle?

$$
S^{\prime}(t)=t^{2}-6 t+5
$$

b.) What is the acceleration function of the particle?

$$
S^{\prime \prime}(t)=2 t-6
$$

c.) When is the particle at rest?
when $S^{\prime}(t)=0$, i.e., when $t^{2}-6 t+5=(t-5)(t-1)=0$

$$
\text { or when } t=1,5 \text {. }
$$

d.) When is the particle moving to the right?

When $s^{\prime}(t)>0$, so when t in $(-\infty, 1) \cup(5,00)$
e.) At time $t=2$, is the particle speeding up or slowing down? Explain your answer.

$$
S^{\prime}(2)<0 \text { and } S^{\prime \prime}(2)=2 \cdot 2-6<0
$$

So speed and acceleration in same direction.
thus the particle is speeding up.

