Circle your Instructor:

Faudree, Williams, Zirbes

Math 251 Fall 2017
Quiz \#8, November 1st
Name: Solution
There are 23 points possible on this quiz. This is a closed book quiz. Calculators and notes are not allowed. Please show all of your work! If you have any questions, please raise your hand.
Exercise 1. (8 pts.) Consider the graph of the function f given below.

a) State the absolute maximum of the function f on the interval $[0,6]$ and give its location or explain why it doesn't exist.

$$
5 \text { ai } x=1
$$

b) State the absolute minimum of the function f on the interval $[0,6]$ and give its location or explain why it doesn't exist.

$$
\text { None, approaches } y=1 \text { an } x=2 \text {, bur doesuíreach it. }
$$

c) Identify any other local maxima of the function f and their locations.

$$
4 \text { ar } x=2,3 \text { ar } x=3
$$

d) Identify any other local minima of the function f and their locations.

$$
4 \text { at } x=0,2 \text { at } x=4,3 \text { at } x=7
$$

Exercise 2. (5 pts.) Find the absolute maximum and absolute minimum of the function

$$
f(x)=-2 x^{3}+3 x^{2}+12 x
$$

on the interval $[0,3]$.

$$
\begin{aligned}
f^{\prime}(x)=-6 x^{2}+6 x+12 & =-6\left(x^{2}-x-2\right) \\
& =-6(x-2)(x+1) \\
\text { So critical point } & =\text { ar } x=2 \text { in }[0,3]
\end{aligned}
$$

$$
\begin{aligned}
& f(0)=0 \\
& f(2)=-16+12+24=20 \\
& f(3)=-54+27+36=36-27=9
\end{aligned}
$$

so absolute moximum is 20 absolure minimum is 0 .

Exercise 3. (5 pts.) Find the critical numbers of the function $F(x)=x^{2 / 5}(x-5)$.

$$
\begin{aligned}
& F(x)=x^{7 / 5}-5 x^{2 / 5} \\
& F^{\prime}(x)=\frac{7}{5} x^{2 / 5}-\frac{10}{5} x^{-3 / 5}=\frac{x^{-3 / 5}}{5}(7 x-10)
\end{aligned}
$$

so critical points ar $x=0$ and $x=\frac{10}{7}$.

Exercise 4. (5 pts.) Consider the function $f(x)=2 x^{2}-3 x+1$ on the interval [0, 2].
a) Verify that the function satisfies the hypotheses of the Mean Value Theorem on the interval [0,2]. Justify your answer in words.

$$
\begin{aligned}
& f(x) \text { is a poly noniel so it is cominumus } \\
& \text { and } \\
& \text { differnitable -(}[0,2] \text {. }
\end{aligned}
$$

b) Find all numbers c in the interval $[0,2]$ that satisfy the conclusion of the Mean Value Theorem.

$$
\begin{aligned}
& m=\frac{f(2)-f(0)}{2}=\frac{8-6+1-1}{2}=1 \\
& f^{\prime}(x)=4 x-3 \\
& 4 x-3=1 \\
& 4 x=4 \\
& x=1
\end{aligned}
$$

