Circle your Instructor:
\qquad

Math 251 Fall 2017
Quiz \#9, November 8th
Name: Solutions
There are 25 points possible on this quiz. This is a closed book quiz. Calculators and notes are not allowed. Please show all of your work! If you have any questions, please raise your hand.
Exercise 1. (12 pts.) Evaluate the limits below. Use L'Hospital's Rule where appropriate. Indicate when you are using L'Hospital's Rule and state explicitly the indeterminate form.

$$
\begin{aligned}
& \text { (a.) } \lim _{\theta \rightarrow \pi / 2} \frac{\cos \theta}{\sin (6 \theta)} \stackrel{H}{=} \lim _{\theta \rightarrow \frac{\pi}{2}} \frac{-\sin \theta}{6 \cos (6 \theta)}=\frac{-\sin (\pi / 2)}{6 \cos (3 \pi)}=\frac{-1}{-6}=\frac{1}{6} \\
& \begin{aligned}
\cos (\pi / 2) & =0 \\
\sin \left(6 \cdot \frac{\pi}{2}\right) & =\sin 3 \pi \\
& =0
\end{aligned}
\end{aligned}
$$

form $\frac{0}{0}$

(11) $\lim _{x \rightarrow \infty} \frac{-4}{9 x^{2} e^{x^{3}}}=0$
\sim form 1^{∞}.
(c.) $\lim _{x \rightarrow 0}(1-5 x)^{1 / x}=e^{-5}$ Let $y=(1-5 x)^{1 / x}$.
retranslate So $\ln y=\frac{1}{x} \ln (1-5 x)$.

$$
\text { Now } \lim _{x \rightarrow 0} \frac{\ln (1-5 x)}{x} \stackrel{\oplus}{t}=
$$

v-1

Circle your Instructor:

Exercise 2. (10 pts.) Use the information below to answer questions about the function $f(x)$. Make sure you answer the question! If something doesn't exist, you must explicitly state this.

$$
f(x)=\frac{1}{x^{2}+6}, \quad f^{\prime}(x)=\frac{-2 x}{\left(x^{2}+6\right)^{2}}, \quad f^{\prime \prime}(x)=\frac{6\left(x^{2}-2\right)}{\left(x^{2}+6\right)^{3}} .
$$

(a.) Find the interval(s) where the function is increasing and the intervals) where the function is decreasing.
$f^{\prime}=0$ when $x=0$
f^{\prime} never undefined

$$
\begin{array}{lc}
f^{\prime}(1)=\frac{-}{t}=- & \text { answer: } \\
f(-1)=\frac{t}{t}=+ & f \text { is increasing on }(-\infty, 0) \\
& \text { and } \\
& \text { decreasing on }(0, \infty)
\end{array}
$$

(b.) Find the local maximum and minimum values of f and where they occur.

\uparrow local
max here
answer:
$f(0)=\frac{1}{6}$ is the local maximum.
has no local minimum.
(c.) Find the intervals of concavity and any inflection points.

$$
f^{\prime \prime}(x)=0 \text { when } x^{2}-2=0
$$

or $x= \pm \sqrt{2}$ $f^{\prime \prime}$ is never undefined.

$$
\begin{array}{ll}
f^{\prime \prime}(-5)=\frac{+\cdot t}{t}=+ & \begin{array}{l}
\text { Answer: } \\
f^{\prime \prime}(0)=\frac{+0-}{t}=-
\end{array} \\
\text { fisc coup on } \\
f^{\prime \prime}(5)=\frac{+-+}{t}=+ & \text { cc down on }(-\sqrt{2}, \sqrt{2}) .
\end{array}
$$

r sign of

$$
\begin{aligned}
f^{\prime \prime} \quad f(\sqrt{2}) & =\frac{1}{(\sqrt{2})^{2}+6}=\frac{1}{8} \\
f(-\sqrt{2}) & =\frac{1}{8}
\end{aligned}
$$

inflection points at $(\sqrt{2}, 1 / 8)$ and $(-\sqrt{2}, 1 / 8)$.

Exercise 3. (2 pts.) Given $f(x)=2+x e^{-x}, f^{\prime}(x)=-(x-1) e^{-x}$, and $f^{\prime \prime}(x)=(x-2) e^{-x}$, use the Second Derivative Test to identify the local minimum and maximum values of f or explain why the test is inconclusive.

$$
\begin{aligned}
& f^{\prime}(x)=0 \text { when } x=1 . \\
& f^{\prime \prime}(1)=-1 \cdot e^{-1}<0 .
\end{aligned}
$$

So f is ccdown of $x=1$.
So f has a local maximum at $x=1$. The maximum value is $f(1)=2+e^{-1}$.

