Name: \qquad
\qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [5 points] Evaluate the limit. Show work and use proper limit notation for full credit.

$$
\begin{aligned}
\lim _{x \rightarrow-5} \frac{x+5}{x^{2}+7 x+10} & =\lim _{x \rightarrow-5} \frac{x+5}{(x+5)(x+2)} \\
& =\lim _{x \rightarrow-5} \frac{1}{x+2} \\
& =-\frac{1}{3}
\end{aligned}
$$

2. [5 points] Evaluate the limit. Show work and use proper limit notation for full credit.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{2-\sqrt{4+h}}{h} & =\lim _{x \rightarrow 0} \frac{(2-\sqrt{4+h})(2+\sqrt{4+h})}{h} \\
& =\lim _{x \rightarrow 0} \frac{4-(4+h)}{h} \\
& =\lim _{x \rightarrow 0} \frac{-h}{h}=\lim _{h \rightarrow 0}-1=-1
\end{aligned}
$$

a. Why is the following not a true statement?:

$$
\frac{2 x^{2}-3 x}{x}=2 x-3
$$

The expression on the right-hand side is defined at $x=0$, but the expression on the left-hand side is not.
b. Explain why the following equation is correct:

$$
\begin{aligned}
& \text { "e the same excess at one ont } \\
& (x=0) \text { ad "liens doris cue shout are } \\
& \text { pout." }
\end{aligned}
$$

4. [6 points] Consider the function

$$
f(x)= \begin{cases}2 x+1 & x<0 \\ -1+x & x \geq 0\end{cases}
$$

a. On the axes below, sketch a graph of $f(x)$.

b. Evaluate the limit, or explain why it does not exist:
$\lim _{x \rightarrow 0} f(x) \quad \lim _{x \rightarrow 0^{+}} f(x)=-1$
$\lim _{x \rightarrow 0} f(x)=1$
$x \rightarrow 0^{-}$
Sine the leff-al right-
had units oe diffent,
the limit $\lim _{x \rightarrow 0} f(x)$ docs
not exist.
c. Is f continuous at $x=0$? Explain using the definition of continuity.

The function 3 not continuausat $x=0$. We
would reed $\operatorname{lin} f(x)=f(0)=-1$. But the limit does not exist.
5. [5 points] Use the Intermediate Value Theorem to justify the claim that there exists a number x on the interval $(0,1)$ satisfying $e^{x}-6 x=0$.
Let $f(x)=e^{x}-6 x$. Notus $f(0)=1>0$, but $f(1) \approx 2.7-6<0$. Since $f(x)$ is continuous on $[0,1]$ the IVT implies for some x in $(0,1)$, $f(x)=0$.

