Name: \qquad
Instructor: Bueler | Jurkowski | Maxwell
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [15 points] Compute the derivatives of the following functions. You need not simplify your answers.
a. $f(x)=x^{\frac{3}{2}}+9-e^{x}$

$$
f^{\prime}(x)=\frac{3}{2} x^{1 / 2}-e^{x}
$$

b. $g(w)=7 w-\frac{\pi}{w^{2}}$

$$
g^{\prime}(w)=7-\pi \frac{d}{d w} w^{-2}=7+2 \pi w^{-3}=7+\frac{2 \pi}{w^{3}}
$$

c. $h(x)=\frac{1}{4-x^{2}}$

$$
h^{\prime}(x)=-\frac{\frac{d}{d x}\left(4-x^{2}\right)}{\left(4-x^{2}\right)^{2}}=\frac{2 x}{\left(4-x^{2}\right)^{2}}
$$

d. $R(s)=\left(s^{2}-1\right) e^{s}$

$$
\begin{aligned}
R^{\prime}(s) & =2 s e^{s}+\left(s^{2}-1\right) e^{s} \\
& =\left(s^{2}+2 s-1\right) e^{s}
\end{aligned}
$$

e. $f(x)=\frac{3-x^{3}}{2+x}$

$$
(2+x)^{2}
$$

$$
\begin{aligned}
& =\frac{-3 x^{2}(2 x)-\left(3-x^{3}\right)}{(2+x)^{2}} \\
& =-\frac{3+6 x^{2}+2 x^{3}}{(2+x)^{2}}
\end{aligned}
$$

2. [4 points] Find the equation of the tangent line to the graph of $y=\sqrt{3 x}$ at $x=2$.

$$
\frac{d y}{d x}=\frac{d}{d x} \sqrt{3} x^{1 / 2}=\frac{\sqrt{3}}{2} x^{-1 / 2}
$$

(4) $x=2: \quad y=\sqrt{6}$

$$
\frac{d y}{d x}=\frac{\sqrt{3}}{2 \sqrt{2}}
$$

$$
\text { tangent line } y=\sqrt{6}+\frac{\sqrt{3}}{2 \sqrt{2}}(x-2)
$$

3. [6 points] The temperature in ${ }^{\circ} \mathrm{C}$ of coffee in a cup is given by

$$
T(t)=20+\frac{50}{e^{t}}
$$

where t is measured in hours.
a. What is the temperature of the coffee at time $t=0$? Include units in your answer.

$$
T(0)=20+\frac{50}{1}=70^{\circ} \mathrm{C}
$$

b. What is the rate of change of temperature of the coffee at time $t=0$? Include units in your answer.

$$
\begin{aligned}
& T^{\prime}(t)=\frac{d}{d t} \frac{50}{e^{t}}=-\frac{50}{\left(e^{t}\right)^{2}} e^{t}=-50 e^{-t} \\
& T^{\prime}(0)=-50 e^{-0}=-50^{\circ} \mathrm{C} / \mathrm{har}
\end{aligned}
$$

