Name: \qquad
\qquad
Instructor: Bueler | Jurkowski | Maxwell
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [15 points] Compute the derivatives of the following functions. You need not simplify your answers.
a. $f(x)=e^{x}-6+x^{\frac{5}{2}}$

$$
f^{\prime}(x)=e^{x}+\frac{5}{2} x^{3 / 2}
$$

b. $g(w)=\frac{\pi}{w^{2}}-3 w$

$$
\begin{aligned}
g^{\prime}(w)=\pi\left(\frac{d}{d w} w^{-2}\right)-3 & =-2 \pi w^{-3}-3 \\
& =\frac{1-2 \frac{\pi}{w^{3}}-3}{}
\end{aligned}
$$

c. $h(x)=\frac{1}{2-x^{2}}$

$$
h^{\prime}(x)=\frac{-\frac{l}{d x}\left(2-x^{2}\right)}{\left(2-x^{2}\right)^{2}}=\frac{2 x}{\left(2-x^{2}\right)^{2}}
$$

d. $R(s)=\left(s^{3}-1\right) e^{s}$

$$
\begin{aligned}
R^{\prime}(s) & =3 s^{2} e^{s}+\left(s^{3}-1\right) e^{s} \\
& =\left[s^{3}+3 s^{2}-1\right] e^{s}
\end{aligned}
$$

e. $f(x)=\frac{2-x^{3}}{3+x}$
2. [6 points] The temperature in ${ }^{\circ} \mathrm{C}$ of coffee in a cup is given by

$$
T(t)=20+\frac{50}{e^{t}}
$$

where t is measured in hours.
a. What is the temperature of the coffee at time $t=0$? Include units in your answer.

$$
T(0)=20+\frac{50}{1}=70^{\circ} \mathrm{C}
$$

b. What is the rate of change of temperature of the coffee at time $t=0$? Include units in your answer.

$$
\begin{aligned}
& T^{\prime}(t)=\frac{d}{d t} \frac{50}{e^{t}}=-\frac{50}{\left(e^{t}\right)^{2}} e^{t}=-50 e^{-t} \\
& T^{\prime}(0)=-50 e^{-0}=-50^{\circ} \mathrm{C} / \mathrm{har}
\end{aligned}
$$

3. [4 points] Find the equation of the tangent line to the graph of $y=\sqrt{3 x}$ at $x=2$.

$$
\frac{d y}{d x}=\frac{d}{d x} \sqrt{3} x^{1 / 2}=\frac{\sqrt{3}}{2} x^{-1 / 2}
$$

(a) $x=2: \quad y=\sqrt{6}$

$$
\frac{d y}{d x}=\frac{\sqrt{3}}{2 \sqrt{2}}
$$

$$
\text { tangent line } y=\sqrt{6}+\frac{\sqrt{3}}{2 \sqrt{2}}(x-2)
$$

