Name: \qquad
Instructor: Bueler | Jurkowski | Maxwell
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [16 points] Compute the derivatives of the following functions. You need not simplify your answers.
a. $r(\theta)=\theta \tan (\theta) \sec (\theta)$

$$
r^{\prime}(\theta)=\sec (\theta) \tan (\theta)+\theta \sec (\theta) \tan ^{2}(\theta)+\theta \sec ^{3}(\theta)
$$

b. $g(t)=e^{t^{2}} \sec (t)$

$$
g^{\prime}(t)=2 t e^{\left(t^{2}\right)} \sec (t)+e^{\left(t^{2}\right)} \sec (t) \operatorname{tec}(t)
$$

c. $f(x)=\frac{x^{3}}{\sqrt{2 x-5}}$

$$
f^{\prime}(x)=\frac{3 x^{2} \sqrt{2 x-5}-x^{3} \frac{1}{\sqrt{2 x-5}}}{2 x-5}=\frac{3 x^{2}(2 x-5)-x^{3}}{(2 x-5)^{3 / 2}}
$$

$$
\begin{aligned}
& \text { d. } s(t)=\tan \left(e^{\cos (t)}\right) \\
& s^{\prime}(t)=\sec ^{2}\left(e^{\cos (t)}\right) e^{\cos (t)} \cdot(-\sin (t))
\end{aligned}
$$

2. [5 points]
a. Find the first four derivatives of $y=\cos (4 x)$.

$$
\begin{aligned}
& y=\cos (4 x) \\
& y^{\prime}=-4 \sin (4 x) \\
& y^{\prime \prime}=-16 \cos (4 x) \\
& y^{\prime \prime \prime}=4^{3} \sin (4 x) \\
& y^{\prime \prime \prime}=4^{4} \cos (4 x)
\end{aligned}
$$

b. Using part (a), determine the 47th derivative of $y=\cos (4 x)$.

$$
\begin{aligned}
47=4 & =4 \cdot 11+3 \\
y^{(47)} & =4^{47} \sin (4 x)
\end{aligned}
$$

3. [4 points] Consider the function $f(t)=t-\cos t$.
a. Find all t values for which $f(t)$ has a horizontal tangent line.

$$
\begin{aligned}
& f^{\prime}(t)=1+\sin (t) \\
& f^{\prime}(t)=0 \Rightarrow \quad \sin (t)=-1 \\
& t=3 \frac{\pi}{2}+2 \pi k, k \in \mathbb{Z}
\end{aligned}
$$

b. Suppose $f(t)$ represents the position in feet of some particle at time t seconds. Find the velocity of the particle at time $t=\frac{\pi}{2}$.

$$
\begin{array}{r}
f^{\prime}\left(\frac{\pi}{2}\right)=1+\sin \left(\frac{\pi}{2}\right)=2 . \\
\\
\text { Velocity: } 2 \mathrm{fH} / \mathrm{s}
\end{array}
$$

