Name: \qquad / 25
Instructor: Bueler | Jurkowski | Maxwell
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [4 points] Find all critical numbers (a.k.a. critical points) of the function $f(x)=\sqrt[5]{x^{2}-4}$. Be careful!
2. [5 points] Sketch a function on $[-5,5]$ that has an absolute maximum value of 4 at $x=-3$, an absolute minimum value of -3 at $x=1$, and a local maximum at $x=3$. You should appropriately label notable values on the x - and y-axes for full credit.

3. [8 points] Find the maximum and minimum values of the function $f(x)=4 x+\frac{1}{x}$ on the interval $[1 / 5,1]$.
4. [8 points] Suppose f is continuous on $[-2,2]$ and has a derivative at each point in $(-2,2)$. Suppose $f(-2)=4$ and $f(2)=-6$.
a. What specifically does the Mean Value Theorem let you conclude?
b. Draw a diagram that illustrates the Mean Value Theorem for this problem. Your illustration should include a tangent line somewhere.

