Name: \qquad / 25
Instructor: Bueler | Jurkowski | Maxwell
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [8 points] The function $f(x)$ with domain $(-\infty, \infty)$ has the following properties.
2. $f(0)=5 ; \quad f(2)=0$
3. $f^{\prime}(x)=0$ at $x=0$ and $x=2$, and $f^{\prime}(x)$ otherwise has signs:

4. $f^{\prime \prime}(x)=0$ at $x=0,1$ and 3 and $f^{\prime \prime}(x)$ otherwise has signs:

5. $\lim _{x \rightarrow-\infty} f(x)=\infty ; \quad \lim _{x \rightarrow \infty} f(x)=5$

Make a sketch of the graph of the function on the axes below.

2. [4 points] Compute the following limits.
a. $\lim _{x \rightarrow 0} \frac{e^{\pi x}-1}{\sin x}$.
b. $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{2}}$.
3. [13 points] Consider the function $f(x)=\frac{\ln x}{x^{2}}$. We have computed for you

$$
f^{\prime}(x)=\frac{1-2 \ln x}{x^{3}} ; \quad f^{\prime \prime}(x)=\frac{6 \ln x-5}{x^{4}}
$$

a. Find the domain of $f(x)$.
b. Find the vertical and horizontal asymptotes. [Can 2b. from the previous page help?]
c. Find the single critical point c and the intervals where $f(x)$ is increasing and decreasing.
d. Determine whether $f(x)$ has a local minimum, maximum, or neither at $x=c$ using the first derivative test.
e. Find the intervals where $f(x)$ is concave up and concave down.
f. Using the information above, sketch the graph of $f(x)$, making sure to label important points.

