Name: \qquad / 25
Instructor: Bueler | Jurkowski | Maxwell
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [5 points] Sketch the region enclosed by the given curves and calculate its area. [You may use either part of the Fundamental Theorem of Calculus.]
$y=\sqrt{x}, \quad y=0, \quad x=4$
2. [5 points] Use the Midpoint Rule with $n=2$ subintervals to approximate the integral:
$\int_{0}^{4} \frac{x}{x+1} d x \approx$
3. [3 points] The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.
a. $\int_{-4}^{-2} f(x) d x=$
b. $\int_{-4}^{1} f(x) d x=$
c. $\int_{4}^{1} f(x) d x=$

4. [4 points] Evaluate the integral.

$$
\int_{1}^{3}(x-2)(x+4) d x=
$$

5. [4 points] Evaluate the integral.

$$
\int_{0}^{1}\left(e+x^{e}+e^{x}\right) d x=
$$

6. [4 points] Let $F(x)=\int_{2}^{x} e^{t^{2}} d t$. Find an equation of the tangent line to the curve $y=F(x)$ at the point where $x=2$.
