Name: \qquad
\qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [2 points] Use the graph of the function of $f(x)$ to find all x-values where $f(x)$ fails to be continuours.

Answer: $x=4,4,4,6$
2. [4 points]
a. What is wrong with the following equation? $\frac{x-4 x^{3}}{x}=1-4 x^{2}$

It is false when $x=0$ because the left is undefined and the right is 1 .
b. In view of part a, explain why the following equation is correct. $\quad \lim _{x \rightarrow 0} \frac{x-4 x^{3}}{x}=\lim _{x \rightarrow 0} 1-x^{2}$

Because the limit does not care what happens right at $x=0$. The functions are the same for all other values.
3. [4 points] Explain why the function $f(x)=\left\{\begin{array}{ll}4 \sin x & x<0 \\ 0 & x=0 \\ 4 x-2 & x>0 .\end{array}\right.$ fails to be continuous at $x=0$. $\lim _{x \rightarrow 0^{-}} 4 \sin x=0$ but $\lim _{x \rightarrow 0^{+}} 4 x-2=-2$.

So $\lim f(x)$ does not exist.

$$
x \rightarrow 0
$$

4. [12 points] Evaluate each limit below, if it exists. Show your work to receive full credit. If the limit is infinite, say so; don't just write "DNE".
a. $\lim _{x \rightarrow 2} \frac{x^{2}+5 x-14}{2+x-x^{2}}=\lim _{x \rightarrow 2} \frac{x^{2}+5 x-14}{-\left(x^{2}-x-2\right)}=\lim _{x \rightarrow 2} \frac{(x-2)(x+7)}{-(x-2)(x+1)}$

$$
=\lim _{x \rightarrow 2} \frac{-(x+7)}{x+1}=\frac{-9}{3}=-3
$$

b. $\lim _{h \rightarrow 10^{-}} \frac{2|h|-20}{h-10}=\lim _{h \rightarrow 10^{-}} \frac{2(|h|-10)}{h-10}=\lim _{h \rightarrow 10^{-}} \frac{2(h-10)}{h-10}=\lim _{h \rightarrow 10^{-}} 2=2$
$b / c \quad h>0$, so $|h|=h$.
c. $\lim _{x \rightarrow 5^{+}}\left(\frac{1}{x-5}-\frac{1}{x(x-5)}\right)=\lim _{x \rightarrow 5^{+}} \frac{x-1}{x(x-5)}=+\infty$
because as $x \rightarrow 5^{+}, x-1>0$ and $x>0$ and $x-5>0$. Also as $x \rightarrow 5^{+}, x-5 \rightarrow 0^{+}$.
5. [3 points] What property of the square root function allows you to move the limit inside the square root, as done below.

$$
\lim _{x \rightarrow 5} \sqrt{x^{2}+9}=\sqrt{\lim _{x \rightarrow 5}\left(x^{2}+9\right)}
$$

$f(x)=\sqrt{x}$ is continuous when it is defined

