Name: \qquad
\qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [2 points] Use the graph of the function of $f(x)$ to find all x-values where $f(x)$ fails to be continuours.

Answer: $x=$ \qquad
2. [4 points]
a. What is wrong with the following equation? $\quad \frac{x^{4}-4 x}{x}=x^{3}-4$

It is false when $x=0$ because the left is undefined and the right is 1 .
b. In view of part a, explain why the following equation is correct. $\quad \lim _{x \rightarrow 0} \frac{x^{4}-4 x}{x}=\lim _{x \rightarrow 0} x^{3}-4$ Because the limit does not care what happens right at $x=0$. The functions are the same for all other values.
3. [4 points] Explain why the function $f(x)=\left\{\begin{array}{ll}3 \cos x & x<0 \\ -2 & x=0 \\ 4 x-2 & x>0 .\end{array}\right.$ fails to be continuous at $x=0$.

$$
\lim _{x \rightarrow 0^{-}} 3 \cos x=3 \text { but } \lim _{x \rightarrow 0^{+}} 4 x-2=-2 .
$$

So $\lim f(x)$ does not exist.

$$
x \rightarrow 0
$$

4. [12 points] Evaluate each limit below, if it exists. Show your work to receive full credit. If the limit is infinite, say so; don't just write "DNE".

$$
=\lim _{x \rightarrow-3} \frac{-(x-2)}{x-5}=\frac{-(-5)}{-8}=-\frac{5}{8}
$$

b. $\lim _{h \rightarrow 5^{-}} \frac{h-5}{4|h|-20}=\lim _{h \rightarrow 5^{-}} \frac{h-5}{4(|h|-5)}=\lim _{h \rightarrow 5^{-}} \frac{h-5}{4(h-5)}=\lim _{h \rightarrow 5^{-}} \frac{1}{4}=\frac{1}{4}$
c. $\lim _{x \rightarrow 3^{-}}\left(\frac{1}{x-3}-\frac{1}{x(x-3)}\right)=\lim _{x \rightarrow 3^{-}} \frac{x-1}{x(x-3)}=-\infty$
as $x \rightarrow 3^{-}, x-1>0, x>0$ and $x-3<0$. Also, as $x \rightarrow 3^{-}, x-3 \rightarrow 0^{-}$
5. [3 points] What property of the natural \log function allows you to move the limit inside the funddion, as done below?

$$
\lim _{x \rightarrow 5}\left(\ln \left(x^{2}+16\right)\right)=\ln \left(\lim _{x \rightarrow 5}\left(x^{2}+16\right)\right)
$$

$y=\ln x$ is continuous where it is defined.

