Name: \qquad
\qquad / 25
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [2 points] Use the graph of the function of $f(x)$ to find all x-values where $f(x)$ fails to be continuous.

Answer: $x=$ \qquad
2. [4 points]
a. What is wrong with the following equation? $\quad \frac{x^{4}-4 x}{x}=x^{3}-4$
b. In view of part a, explain why the following equation is correct. $\quad \lim _{x \rightarrow 0} \frac{x^{4}-4 x}{x}=\lim _{x \rightarrow 0} x^{3}-4$
3. [4 points] Explain why the function $f(x)=\left\{\begin{array}{ll}3 \cos x & x<0 \\ -2 & x=0 \\ 4 x-2 & x>0 .\end{array}\right.$ fails to be continuous at $x=0$.
4. [12 points] Evaluate each limit below, if it exists. Show your work to receive full credit. If the limit is infinite, say so; don't just write "DNE".
a. $\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{15+2 x-x^{2}}$.
b. $\lim _{h \rightarrow 5^{-}} \frac{h-5}{4|h|-20}$
c. $\lim _{x \rightarrow 3^{-}}\left(\frac{1}{x-3}-\frac{1}{x(x-3)}\right)$
5. [3 points] What property of the natural \log function allows you to move the limit inside the function, as done below?

$$
\lim _{x \rightarrow 5}\left(\ln \left(x^{2}+16\right)\right)=\ln \left(\lim _{x \rightarrow 5}\left(x^{2}+16\right)\right)
$$

