\qquad
\qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [9 points] For each function below, find its derivative. You do not need to simplify your answer.
a. $f(x)=\sqrt{5 x}+x^{e}+\frac{5}{3 x^{2}}=\sqrt{5} \cdot \chi^{1 / 2}+\chi^{e}+\frac{5}{3} x^{-2}$

$$
f^{\prime}(x)=\frac{\sqrt{5}}{2} x^{-1 / 2}+e x^{e-1}-\frac{10}{3} x^{-3}
$$

b. $g(x)=\frac{x+1}{x^{2}+2}$

$$
g^{\prime}(x)=\frac{\left(x^{2}+2\right)(1)-(x+1)(2 x)}{\left(x^{2}+2\right)^{2}}
$$

$h^{\prime}(x)=\left(-\frac{2}{3} x^{-5 / 3}\right)\left(e^{x}\right)+\left(x^{-2 / 3}\right)\left(e^{x}\right)$
2. [5 points] For what x-values does $f(x)=a x^{3}-b x+c$ positive constants)

$$
\begin{array}{r}
f^{\prime}(x)=3 a x^{2}-b=0 \\
x= \pm \sqrt{\frac{b}{3 a}}
\end{array}
$$

3. [8 points] Suppose that $f(2)=10, f^{\prime}(2)=3, g(2)=-1$, and $g^{\prime}(2)=4$. Find the following values:
a. $(f+g)^{\prime}(2)=f^{\prime}(2)+g^{\prime}(2)=3+4=7$
b. $(6 f-g)^{\prime}(2)=6 f^{\prime}(2)-g^{\prime}(2)=6 \cdot 3-4=18-4=14$
c. $\left(f g^{\prime}(2)=f(2) \cdot g^{\prime}(2)+f^{\prime}(2) \cdot g(2)=10 \cdot 4+3 \cdot(-1)=40-3=37\right.$
a. $\left(\frac{f}{8}\right)^{\prime}(2)=\frac{g(2) \cdot f^{\prime}(2)-f(2) \cdot g^{\prime}(2)}{[g(2)]^{2}}=\frac{(-1)(3)-(10)(4)}{(-1)^{2}}=-43$
4. [5 points] Find an equation of the tangent line to the curve $y=\boldsymbol{7} x-\frac{2}{x}$ when $x=1$.

