Name: \qquad
\qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [9 points] For each function below, find its derivative. You do not need to simplify your answer.
a. $f(x)=\sqrt{3 x}+x^{e}+\frac{4}{3 x^{2}}=\sqrt{3} \cdot x^{1 / 2}+x^{e}+\frac{4}{3} x^{-2}$

$$
f^{\prime}(x)=\frac{\sqrt{3}}{2} x^{-1 / 2}+e x^{e-1}-\frac{8}{3} x^{-3}
$$

$$
\text { b. } h(x)=x^{-1 / 3 / 8 x} x / h^{\prime}(x)=\left(-\frac{-1}{3} x^{-4 / 3}\right) e^{x}+\left(x^{-1 / 3}\right) e^{x}
$$

c. $g(x)=\frac{x+1}{x^{3}+2}$

$$
g^{\prime}(x)=\frac{\left(x^{3}+2\right)(1)-(x+1)\left(3 x^{2}\right)}{\left(x^{3}+2\right)^{2}}
$$

2. [4 points] For what x-values does $f(x)=a x^{3}-b x+c$ have a horizontal tangent? (Assume a, b, and c are positive real numbers.)

$$
\begin{aligned}
& f^{\prime}(x)=3 a x^{2}-b \\
& x= \pm \sqrt{\frac{b}{3 a}}
\end{aligned}
$$

3. [8 points] Suppose that $f(2)=\boldsymbol{5}, f^{\prime}(2)=3, g(2)=-1$, and $g^{\prime}(2)=\mathbf{6}$ Find the following values:
a. $(f+g)^{\prime}(2)=f^{\prime}(2)+g^{\prime}(2)=3+6=9$
b. $(10 f-g)^{\prime}(2)=10 f^{\prime}(2)-g^{\prime}(2)=10 \cdot 3-6=30-6=24$
c. $\left(f g^{\prime}(2)=f(2) \cdot g^{\prime}(2)+f^{\prime}(2) \cdot g(2)=5 \cdot 6+3(-1)=30-3=27\right.$
d. $\left(\frac{5}{8}\right)^{\prime}(2)=\frac{g(2) \cdot f^{\prime}(2)-f(2) \cdot g^{\prime}(2)}{(g(2))^{2}}=\frac{(-1)(3)-(5)(6)}{(-1)^{2}}=\frac{-3-30}{1}=-33$
4. [4 points] Find an equation of the tangent line to the curve $y=10 x-\frac{2}{x}$ when $x=1$.

$$
\begin{aligned}
& y(1)=10-2=8 \\
& y^{\prime}(x)=10+2 x^{-2} \\
& y^{\prime}(1)=10+2=12=m \\
& y-8=12(x-1) \\
& y=12 x-12+8 \\
& y=12 x-4
\end{aligned}
$$

