Name: \qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [15 points] Find the derivatives of each of the following. You do not need to simplify your answer.
a. $h(\theta)=e^{2} \sec (\theta)+\cot (\theta)$

$$
h^{\prime}(\theta)=e^{2} \sec \theta \tan \theta-\csc ^{2} \theta
$$

b. $y=\cos \left(5 x^{2}\right)$

$$
\frac{d y}{d x}=\left(-\sin \left(5 x^{2}\right)\right)(10 x)
$$

$$
\begin{aligned}
& \text { c. } f(x)=\frac{\tan (x)}{x-3 \sin (x)} \\
& f^{\prime}(x)=\frac{(x-3 \sin x)\left(\sec ^{2} x\right)-(\tan x)(1-3 \cos x)}{(x-3 \sin x)^{2}}
\end{aligned}
$$

d. $f(q)=q^{3} e^{5 q+6}$

$$
f^{\prime}(q)=3 q^{2}\left(e^{5 q+6}\right)(5)+q^{3}\left(e^{5 q+6}\right)(5)
$$

$$
\text { e. } k(t)=\left(\sqrt[s t-]{1}-u_{1}+3\right)^{5}=\left(t^{1 / 5}-7 t+3\right)^{5}
$$

$$
k^{\prime}(t)=5\left(t^{1 / 5}-7 t+3\right)^{4}\left(\frac{1}{5} t^{-4 / 5}-7\right)
$$

2. [4 points] Find an x-value such that the function $f(x)=2 x+\cos (4 x)$ has a horizontal tangent line. (You do not have to find every value. Simply find one.)

$$
\begin{aligned}
& f^{\prime}(x)=2-4 \sin (4 x)=0 \\
& 2=4 \sin (4 x) \\
& \sin (4 x)=\frac{1}{2} \\
& \sin (\theta)=\frac{1}{2} \text { when } \theta=\frac{\pi}{6}
\end{aligned}
$$

3. [6 points] In a certain experiment involving bacteria, the number N of bacteria in a culture after t days is modeled by the function

$$
N(t)=900\left(1+\frac{3}{\left(t^{2}+1\right)^{2}}\right)=900\left(1+3\left(t^{2}+1\right)^{-2}\right)
$$

a. How many bacteria are in the culture at the beginning of the experiment? beginning means $t=0$.

$$
N(0)=900(1+3)=900 \cdot 4=3600 \text { bacteria }
$$

b. Compute $N^{\prime}(t)$. (You do not need to simplify, but you may if you choose.)

$$
N^{\prime}(t)=900\left(0+3(-2)\left(t^{2}+1\right)^{3}(2 t)\right)=\frac{-12(000) t}{\left(t^{2}+1\right)^{3}}
$$

c. After one day, is the number of bacteria in the culture increasing or decreasing, and how do you know? (Justify your answer; an answer with no justification will receive no credit.) The number of bacteria is decreasing because $N^{\prime}(1)<0$.

