25 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify, but show all work and use proper notation for full credit.

1. [4 points] Use the graph to determine all the absolute and local maximum and minimum values of the function. If a value does not exist, write DNE.

	y - value	occurs at $x=$
local max (list all)	4	3
local min (list all)	3.5	2,6
absolute max	6	0
absolute min	2	2,4

2. [7 points] Find the absolute maximum and absolute minimum values of

$$
f(x)=x^{3}+3 x^{2}-9 x-3
$$

on the interval $[0,3]$, and the x-values where they occur.

$$
f^{\prime}(x)=3 x^{2}+6 x-9
$$

Solve $f^{\prime}(x)=0 \Rightarrow 3 x^{2}+6 x-9=0 \Rightarrow x^{2}+2 x-3=0$

$$
\Rightarrow(x+3)(x-1)=0 \Rightarrow x=-3 \text { or } x=1 \text {. }
$$

only $x=1$ is in the domain. Note $f^{\prime}(x)$ is defined everywhere.

$$
\begin{aligned}
f(1) & =1^{3}+3(1)^{2}-9(1)-3 \\
& =1+3-9-3 \\
& =-8 \\
f(3) & =27+3(9)-9(3)-3 \\
& =27+27-27-3 \\
& =24
\end{aligned}
$$

$\begin{array}{ll}\text { Absolute Maximum: } y=\frac{24}{} & \text { at } x=\frac{3}{1} \\ \text { Absolute Minimum: } y=-8 & \text { at } x=1\end{array}$

3. [8 points]

Consider the function $f(x)$ shown on the graph below, on the interval [0,2]. It has the property that $f(0)=0$ and $f(2)=\frac{3}{2}$.
a. Fill in the blanks: The funddion $f(x)$ satisfies the hypothesens of the Mean Value Rheorem, which means that $f(x)$ is differentiable on $(0,2)$ and continuous on $[0,2]$.
b. What can we conclude about the fundion $f(x)$, by the Mean Value Rheorem? (That is, state the conclusion of the Mean Value Theorem, specified to this function.)

There exists a value $c \in(0,2)$

 so that$$
\begin{aligned}
& \frac{3 / 2-0}{2-0}=f^{\prime}(c) \Rightarrow \\
& f^{\prime}(c)=\frac{3}{2} \cdot \frac{1}{2}=3 / 4 .
\end{aligned}
$$

c. The graph of $f(x)$ is shown below. Add lines to the graph to illustrate what the Mean Value Theorem says about this function. Then use the the graph to estimate the values) of c whose existence is predicted by the Mean Value Theorem.

Estimated value (s) (to the nearest tenth) of c predicted by MVT (list all): $x=0.4,1.6$
4. [6 points] Find the critical numbers (critical points) of the function

$$
\begin{aligned}
& g^{\prime}(x)=1 / 3\left(x^{2}-9\right)^{-2 / 3}(2 x)=\frac{2 x(x)=\sqrt[3]{x^{2}-9}=\left(x^{2}-9\right)^{1 / 3}}{3 \sqrt[3]{\left(x^{2}-9\right)^{2}}} \\
& g^{\prime}(x)=0 \Rightarrow x=0 \\
& g^{\prime}(x) \text { ONE } \Rightarrow x^{2}-9=0 \Rightarrow x=3 \text { or } x=-3
\end{aligned}
$$

Critical points: $x=0,3,-3$.

