Name: \qquad

25 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify, but show all work and use proper notation for full credit.

1. [4 points] Use the graph to determine all the absolute and local maximum and minimum values of the function. If a value does not exist, write DNE.

	y - value	occurs at $x=$
local max (list all)		
local min (list all)		
absolute max		
absolute min		

2. [7 points] Find the absolute maximum and absolute minimum values of

$$
f(x)=x^{3}+3 x^{2}-9 x-3
$$

on the interval $[0,3]$, and the x-values where they occur.

Absolute Maximum: $y=$ \qquad at $x=$ \qquad
Absolute Minimum: $y=$ \qquad at $x=$ \qquad

3. [8 points]

Consider the function $f(x)$ shown on the graph below, on the interval [0,2]. It has the property that $f(0)=0$ and $f(2)=\frac{3}{2}$.
a. Fill in the blanks: The function $f(x)$ satisfies the hypotheses of the Mean Value Theorem, which means that $f(x)$ is
and \qquad .
b. What can we conclude about the function $f(x)$, by the Mean Value Theorem? (That is, state the conclusion of the Mean Value Theorem, specified to this function.)
c. The graph of $f(x)$ is shown below. Add lines to the graph to illustrate what the Mean Value Theorem says about this function. Then use the the graph to estimate the value(s) of c whose existence is predicted by the Mean Value Theorem.

Estimated value(s) (to the nearest tenth) of c predicted by MVT (list all):
4. [6 points] Find the critical numbers (critical points) of the function

$$
g(x)=\sqrt[3]{x^{2}-9}
$$

\qquad

