| Math 251: Quiz 7 | , |  |
|------------------|---|--|
| Name:            |   |  |

25 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify, but show all work and use proper notation for full credit.

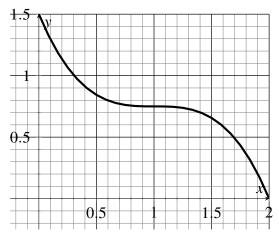
**1. [4 points]** Use the graph to determine all the <u>absolute</u> and <u>local</u> maximum and minimum values of the function. If a value does not exist, write DNE.

|                      | y-<br>value | $\begin{array}{ } \textbf{occurs} \\ \textbf{at } x = \end{array}$ |                          |
|----------------------|-------------|--------------------------------------------------------------------|--------------------------|
| local max (list all) |             |                                                                    |                          |
| local min (list all) |             |                                                                    |                          |
| absolute max         |             |                                                                    |                          |
| absolute min         |             |                                                                    | -1 1 2 3 4 5 6 7 8<br>-1 |

2. [7 points] Find the absolute maximum and absolute minimum values of

$$f(x) = 2x^3 - 3x^2 - 12x + 1$$

on the interval [0,3], and the *x*-values where they occur.


Absolute Maximum: y = \_\_\_\_\_ at x = \_\_\_\_\_Absolute Minimum: y = \_\_\_\_\_ at x = \_\_\_\_\_

Math 251: Quiz 7

## 3. [8 points]

Consider the function f(x) shown on the graph below, on the interval [0,2]. It has the property that f(2) = 0 and  $f(0) = \frac{3}{2}$ .

- **a**. Fill in the blanks: The function f(x) satisfies the hypotheses of the Mean Value Theorem, which means that f(x) is
  - and \_\_\_\_\_
- b. What can we conclude about the function f(x), by the Mean Value Theorem? (That is, state the conclusion of the Mean Value Theorem, specified to this function.)
- c. The graph of f(x) is shown below. Add lines to the graph to illustrate what the Mean Value Theorem says about this function. Then use the the graph to estimate the value(s) of *c* whose existence is predicted by the Mean Value Theorem.



Estimated value(s) of c (to the nearest tenth) predicted by MVT (list all):

4. [6 points] Find the critical numbers (critical points) of the function

$$g(x) = \sqrt[3]{x^2 - 4}.$$

Critical points: x = \_\_\_\_\_