25 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify, but show all work and use proper notation for full credit.

1. [9 points] The function $j(x)$ and its first two derivatives are given below. Use them to answer parts (a)-(d).

$$
j(x)=\frac{(x+1)^{2}}{x^{2}+1}, \quad j^{\prime}(x)=\frac{-2(x-1)(x+1)}{\left(x^{2}+1\right)^{2}}, \quad j^{\prime \prime}(x)=\frac{4 x\left(x^{3}+3\right)}{\left(x^{2}+1\right)^{3}}
$$

a. Does $j(x)$ have any vertical asymptotes? Justify your answer.
b. Does $j(x)$ have any horizontal asymptotes? Justify your answer.
c. Determine the intervals on which $j(x)$ is increasing or decreasing. Show your work to receive credit.
d. Identify where $j(x)$ has any local minimums or local maximums.
2. [8 points] Find the limit.
a. $\lim _{t \rightarrow 0} \frac{e^{17 t}-1}{\sin (2 t)}$

Math 251: Quiz 8

b. $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)$
3. [8 points] On the axes below, sketch the graph of a function that satisfies all of the given conditions. Label on your sketch any local maximums, any local minimums, and any inflection points.
a. $k(x)$ is continuous and differentiable for all real numbers.
b. $k(0)=2$
c. The table below gives information about the sign of first derivative of $k(x)$.

x	$-\infty<x<-4$	$x=-4$	$-4<x<0$	$x=0$	$0<x<\infty$
$k^{\prime}(x)$	-	0	+	0	+

d. The table below gives information about the sign of second derivative of $k(x)$.

$$
\begin{array}{c||c|c|c|c|c}
x & -\infty<x<-1 & x=-1 & -1<x<0 & x=0 & 0<x<\infty \\
\hline k^{\prime \prime}(x) & + & 0 & - & 0 & +
\end{array}
$$

