Name: \qquad
\qquad / 25

25 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify, but show all work and use proper notation for full credit.

1. [9 points] The function $j(x)$ and its first two derivatives are given below. Use them to answer parts (a)-(d).

$$
j(x)=\frac{(x+1)^{2}}{x^{2}+2}, \quad j^{\prime}(x)=\frac{-2(x-2)(x+1)}{\left(x^{2}+2\right)^{2}}, \quad j^{\prime \prime}(x)=\frac{2\left(2 x^{3}-3 x^{2}-12 x+2\right)}{\left(x^{2}+2\right)^{3}}
$$

a. Does $j(x)$ have any vertical asymptotes? Justify your answer.

No. $x^{2}+2=0$ has no solution
b. Does $j(x)$ have any horizontal asymptotes? Justify your answer. Yes. $y=1$. Reason: $\lim _{x \rightarrow \infty} \frac{(x+1)^{2}}{x^{2}+2}=\lim _{x \rightarrow \infty} \frac{1+\frac{2}{x}+\frac{1}{x^{2}}}{1+\frac{2}{x^{2}}}=1$
c. Determine the intervals on which $j(x)$ is increasing or decreasing. Show your work to receive credit.
Critical points: $x=2, x=-1$

d. Identify where $j(x)$ has any local minimums or local maximums.

2. [8 points] Find the limit.
a. $\lim _{t \rightarrow 0} \frac{e^{13 t}-1}{\sin (4 t)}=\lim _{t \rightarrow 0} \frac{13 e^{13 t}}{4 \cos (4 t)}=\frac{13}{4}$ form $\frac{0}{0}$

Math 251: Quiz 8
$\stackrel{(1)}{=} \lim _{x \rightarrow 0^{+}} \frac{e^{x}}{e^{x}+e^{x}+x e^{x}}=\frac{1}{2}$
3. [8 points] On the axes below, sketch the graph of a function that satisfies all of the given conditions. Label on your sketch any local maximums, any local minimums, and any inflection points.
a. $k(x)$ is continuous and differentiable for all real numbers. $<$ Smooth tall 1 piece
b. $k(0)=2$ point $(0,2)$
c. The table below gives information about the sign of first derivative of $k(x)$.

| x | $-\infty<x<-2$ | $x=-2$ | $-2<x<1$ | $x=1$ | $1<x<\infty$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $k^{\prime}(x)$ | + | 0 | - | 0 | - |
| | | $\ldots .$. | \ldots. | | |

d. The table below gives information about the sign of second derivative of $k(x)$.

