Directions: The quiz contains 20 problems. Place your answer in the blank provided. For graphing questions, a set of axes are provided. All graphs must be labeled.

1. Simplify $16^{-\frac{3}{4}}$.
2. Simplify $\log _{10} 0.001$.
3. Find the exact value of $\cos (7 \pi / 6)$.
4. Write the equation of the line between the points $(1,5)$ and $(-2,3)$ in the y-intercept form: $y=m x+b$.
5. Simplify the expression $\left(\frac{3 x^{\frac{1}{2}} y^{5}}{x y^{2}}\right)^{2}$. Write your answer without negative exponents.
6. Use the graph of $f(x)$ below to estimate the value of x such that $f(x)=0$.

7. Expand and simplify $3(x-6)-2\left(x^{2}-1\right)$.
8. Solve the equation $x^{2}=x+20$.
9. Given the piecewise defined function below, determine the value(s) of x such that $f(x)=4$.

$$
f(x)= \begin{cases}x^{2} & x \leq 1 \\ x+1 & x>1\end{cases}
$$

10. Determine where the graphs of $y=2 x-1$ and $y=\sqrt{x}$ intersect.
11. For the function $f(x)=\frac{1}{x}$, find the expression $f(3)-f(3+h)$. Simplify your answer if possible.
12. Evaluate $\sin ^{-1}\left(\frac{-1}{2}\right)$.
13. Given $f(x)=2 x^{2}+x$ and $g(x)=e^{x}$, find $(f \circ g)(x)$. You do not need to simplify your answer.
14. Solve for x in the equation $1+e^{2-x}=4$.
15. Determine the domain of $f(x)=\sqrt{2-4 x}$. Give your answer in interval notation.
16. Solve for θ in the equation $\cos (\theta)=1$.

Graph the following functions. Identify and label any asymptotes, x - or y-intercepts.
17. $f(x)=\frac{1}{x^{2}}$
18. $f(x)=1+e^{-x}$

19. $f(x)=\cos (2 x)$ on the interval $[-2 \pi, 2 \pi]$

20. Use triangles to determine $\tan \theta$ assuming $\sin \theta=\frac{1}{3}$ and θ is in the first quadrant.

