Directions: The quiz contains 20 problems. Place your answer in the blank provided. For graphing questions, a set of axes are provided. All graphs must be labeled.

- 1. Simplify $16^{-\frac{3}{4}}$.
- 2. Simplify $\log_{10} 0.001$.
- 3. Find the exact value of $\cos(7\pi/6)$.
- 4. Write the equation of the line between the points (1,5) and (-2,3) in the *y*-intercept form: y = mx + b.

5. Simplify the expression
$$\left(\frac{3x^{\frac{1}{2}}y^{5}}{xy^{2}}\right)^{2}$$
. Write your answer without negative exponents.

6. Use the graph of f(x) below to estimate the value of x such that f(x) = 0.

7. Expand and simplify $3(x-6) - 2(x^2 - 1)$.

8. Solve the equation $x^2 = x + 20$.

9. Given the piecewise defined function below, determine the value(s) of x such that f(x) = 4.

$$f(x) = \begin{cases} x^2 & x \le 1\\ x+1 & x > 1 \end{cases}.$$

10. Determine where the graphs of y = 2x - 1 and $y = \sqrt{x}$ intersect.

11. For the function $f(x) = \frac{1}{x}$, find the expression f(3) - f(3+h). Simplify your answer if possible.

12. Evaluate $\sin^{-1}(\frac{-1}{2})$.

13. Given $f(x) = 2x^2 + x$ and $g(x) = e^x$, find $(f \circ g)(x)$. You do not need to simplify your answer.

14. Solve for *x* in the equation $1 + e^{2-x} = 4$.

15. Determine the domain of $f(x) = \sqrt{2-4x}$. Give your answer in interval notation.

16. Solve for θ in the equation $\cos(\theta) = 1$.

Graph the following functions. Identify and label any asymptotes, x- or y-intercepts.

20. Use triangles to determine $\tan \theta$ assuming $\sin \theta = \frac{1}{3}$ and θ is in the first quadrant.